Metamath Proof Explorer


Theorem hdmapeq0

Description: Part of proof of part 12 in Baer p. 49 line 3. (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap12a.h H=LHypK
hdmap12a.u U=DVecHKW
hdmap12a.v V=BaseU
hdmap12a.o 0˙=0U
hdmap12a.c C=LCDualKW
hdmap12a.q Q=0C
hdmap12a.s S=HDMapKW
hdmap12a.k φKHLWH
hdmap12a.x φTV
Assertion hdmapeq0 φST=QT=0˙

Proof

Step Hyp Ref Expression
1 hdmap12a.h H=LHypK
2 hdmap12a.u U=DVecHKW
3 hdmap12a.v V=BaseU
4 hdmap12a.o 0˙=0U
5 hdmap12a.c C=LCDualKW
6 hdmap12a.q Q=0C
7 hdmap12a.s S=HDMapKW
8 hdmap12a.k φKHLWH
9 hdmap12a.x φTV
10 eqid LSpanU=LSpanU
11 eqid LSpanC=LSpanC
12 eqid mapdKW=mapdKW
13 1 2 3 10 5 11 12 7 8 9 hdmap10 φmapdKWLSpanUT=LSpanCST
14 1 12 2 4 5 6 8 mapd0 φmapdKW0˙=Q
15 13 14 eqeq12d φmapdKWLSpanUT=mapdKW0˙LSpanCST=Q
16 eqid LSubSpU=LSubSpU
17 1 2 8 dvhlmod φULMod
18 3 16 10 lspsncl ULModTVLSpanUTLSubSpU
19 17 9 18 syl2anc φLSpanUTLSubSpU
20 4 16 lsssn0 ULMod0˙LSubSpU
21 17 20 syl φ0˙LSubSpU
22 1 2 16 12 8 19 21 mapd11 φmapdKWLSpanUT=mapdKW0˙LSpanUT=0˙
23 1 5 8 lcdlmod φCLMod
24 eqid BaseC=BaseC
25 1 2 3 5 24 7 8 9 hdmapcl φSTBaseC
26 24 6 11 lspsneq0 CLModSTBaseCLSpanCST=QST=Q
27 23 25 26 syl2anc φLSpanCST=QST=Q
28 15 22 27 3bitr3rd φST=QLSpanUT=0˙
29 3 4 10 lspsneq0 ULModTVLSpanUT=0˙T=0˙
30 17 9 29 syl2anc φLSpanUT=0˙T=0˙
31 28 30 bitrd φST=QT=0˙