| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap12a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap12a.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap12a.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap12a.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap12a.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmap12a.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 7 |  | hdmap12a.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap12a.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmap12a.x | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 | 1 2 3 10 5 11 12 7 8 9 | hdmap10 | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) | 
						
							| 14 | 1 12 2 4 5 6 8 | mapd0 | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ {  0  } )  =  { 𝑄 } ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  =  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ {  0  } )  ↔  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } )  =  { 𝑄 } ) ) | 
						
							| 16 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 17 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 | 3 16 10 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑇  ∈  𝑉 )  →  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 19 | 17 9 18 | syl2anc | ⊢ ( 𝜑  →  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 20 | 4 16 | lsssn0 | ⊢ ( 𝑈  ∈  LMod  →  {  0  }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝜑  →  {  0  }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 22 | 1 2 16 12 8 19 21 | mapd11 | ⊢ ( 𝜑  →  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  =  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ {  0  } )  ↔  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  =  {  0  } ) ) | 
						
							| 23 | 1 5 8 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 25 | 1 2 3 5 24 7 8 9 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 26 | 24 6 11 | lspsneq0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } )  =  { 𝑄 }  ↔  ( 𝑆 ‘ 𝑇 )  =  𝑄 ) ) | 
						
							| 27 | 23 25 26 | syl2anc | ⊢ ( 𝜑  →  ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } )  =  { 𝑄 }  ↔  ( 𝑆 ‘ 𝑇 )  =  𝑄 ) ) | 
						
							| 28 | 15 22 27 | 3bitr3rd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 )  =  𝑄  ↔  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  =  {  0  } ) ) | 
						
							| 29 | 3 4 10 | lspsneq0 | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑇  ∈  𝑉 )  →  ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  =  {  0  }  ↔  𝑇  =   0  ) ) | 
						
							| 30 | 17 9 29 | syl2anc | ⊢ ( 𝜑  →  ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } )  =  {  0  }  ↔  𝑇  =   0  ) ) | 
						
							| 31 | 28 30 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 )  =  𝑄  ↔  𝑇  =   0  ) ) |