Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap12a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap12a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap12a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap12a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hdmap12a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap12a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
7 |
|
hdmap12a.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap12a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap12a.x |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
1 2 3 10 5 11 12 7 8 9
|
hdmap10 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |
14 |
1 12 2 4 5 6 8
|
mapd0 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) = { 𝑄 } ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ↔ ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } ) = { 𝑄 } ) ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
17 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
3 16 10
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
19 |
17 9 18
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
20 |
4 16
|
lsssn0 |
⊢ ( 𝑈 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑈 ) ) |
21 |
17 20
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( LSubSp ‘ 𝑈 ) ) |
22 |
1 2 16 12 8 19 21
|
mapd11 |
⊢ ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ) ) |
23 |
1 5 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
25 |
1 2 3 5 24 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) |
26 |
24 6 11
|
lspsneq0 |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } ) = { 𝑄 } ↔ ( 𝑆 ‘ 𝑇 ) = 𝑄 ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑇 ) } ) = { 𝑄 } ↔ ( 𝑆 ‘ 𝑇 ) = 𝑄 ) ) |
28 |
15 22 27
|
3bitr3rd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) = 𝑄 ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ) ) |
29 |
3 4 10
|
lspsneq0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉 ) → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ↔ 𝑇 = 0 ) ) |
30 |
17 9 29
|
syl2anc |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ↔ 𝑇 = 0 ) ) |
31 |
28 30
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) = 𝑄 ↔ 𝑇 = 0 ) ) |