Metamath Proof Explorer


Theorem hdmapeq0

Description: Part of proof of part 12 in Baer p. 49 line 3. (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap12a.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap12a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap12a.v 𝑉 = ( Base ‘ 𝑈 )
hdmap12a.o 0 = ( 0g𝑈 )
hdmap12a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap12a.q 𝑄 = ( 0g𝐶 )
hdmap12a.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap12a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap12a.x ( 𝜑𝑇𝑉 )
Assertion hdmapeq0 ( 𝜑 → ( ( 𝑆𝑇 ) = 𝑄𝑇 = 0 ) )

Proof

Step Hyp Ref Expression
1 hdmap12a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap12a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap12a.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap12a.o 0 = ( 0g𝑈 )
5 hdmap12a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap12a.q 𝑄 = ( 0g𝐶 )
7 hdmap12a.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap12a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmap12a.x ( 𝜑𝑇𝑉 )
10 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
11 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
12 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 1 2 3 10 5 11 12 7 8 9 hdmap10 ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆𝑇 ) } ) )
14 1 12 2 4 5 6 8 mapd0 ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) = { 𝑄 } )
15 13 14 eqeq12d ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ↔ ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆𝑇 ) } ) = { 𝑄 } ) )
16 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
17 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 3 16 10 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑇𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
19 17 9 18 syl2anc ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
20 4 16 lsssn0 ( 𝑈 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑈 ) )
21 17 20 syl ( 𝜑 → { 0 } ∈ ( LSubSp ‘ 𝑈 ) )
22 1 2 16 12 8 19 21 mapd11 ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 0 } ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ) )
23 1 5 8 lcdlmod ( 𝜑𝐶 ∈ LMod )
24 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
25 1 2 3 5 24 7 8 9 hdmapcl ( 𝜑 → ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) )
26 24 6 11 lspsneq0 ( ( 𝐶 ∈ LMod ∧ ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆𝑇 ) } ) = { 𝑄 } ↔ ( 𝑆𝑇 ) = 𝑄 ) )
27 23 25 26 syl2anc ( 𝜑 → ( ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆𝑇 ) } ) = { 𝑄 } ↔ ( 𝑆𝑇 ) = 𝑄 ) )
28 15 22 27 3bitr3rd ( 𝜑 → ( ( 𝑆𝑇 ) = 𝑄 ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ) )
29 3 4 10 lspsneq0 ( ( 𝑈 ∈ LMod ∧ 𝑇𝑉 ) → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ↔ 𝑇 = 0 ) )
30 17 9 29 syl2anc ( 𝜑 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) = { 0 } ↔ 𝑇 = 0 ) )
31 28 30 bitrd ( 𝜑 → ( ( 𝑆𝑇 ) = 𝑄𝑇 = 0 ) )