Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapnzcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapnzcl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapnzcl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapnzcl.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hdmapnzcl.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmapnzcl.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
7 |
|
hdmapnzcl.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmapnzcl.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapnzcl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmapnzcl.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
12 |
1 2 3 5 7 8 9 11
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ) |
13 |
|
eldifsni |
⊢ ( 𝑇 ∈ ( 𝑉 ∖ { 0 } ) → 𝑇 ≠ 0 ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
15 |
1 2 3 4 5 6 8 9 11
|
hdmapeq0 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) = 𝑄 ↔ 𝑇 = 0 ) ) |
16 |
15
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) ≠ 𝑄 ↔ 𝑇 ≠ 0 ) ) |
17 |
14 16
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ≠ 𝑄 ) |
18 |
|
eldifsn |
⊢ ( ( 𝑆 ‘ 𝑇 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ↔ ( ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ∧ ( 𝑆 ‘ 𝑇 ) ≠ 𝑄 ) ) |
19 |
12 17 18
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ) |