| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapnzcl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapnzcl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapnzcl.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapnzcl.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 5 |  | hdmapnzcl.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmapnzcl.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 7 |  | hdmapnzcl.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | hdmapnzcl.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmapnzcl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmapnzcl.t | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 | 10 | eldifad | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 12 | 1 2 3 5 7 8 9 11 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ∈  𝐷 ) | 
						
							| 13 |  | eldifsni | ⊢ ( 𝑇  ∈  ( 𝑉  ∖  {  0  } )  →  𝑇  ≠   0  ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝜑  →  𝑇  ≠   0  ) | 
						
							| 15 | 1 2 3 4 5 6 8 9 11 | hdmapeq0 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 )  =  𝑄  ↔  𝑇  =   0  ) ) | 
						
							| 16 | 15 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 )  ≠  𝑄  ↔  𝑇  ≠   0  ) ) | 
						
							| 17 | 14 16 | mpbird | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ≠  𝑄 ) | 
						
							| 18 |  | eldifsn | ⊢ ( ( 𝑆 ‘ 𝑇 )  ∈  ( 𝐷  ∖  { 𝑄 } )  ↔  ( ( 𝑆 ‘ 𝑇 )  ∈  𝐷  ∧  ( 𝑆 ‘ 𝑇 )  ≠  𝑄 ) ) | 
						
							| 19 | 12 17 18 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ∈  ( 𝐷  ∖  { 𝑄 } ) ) |