Metamath Proof Explorer


Theorem hdmapnzcl

Description: Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015)

Ref Expression
Hypotheses hdmapnzcl.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapnzcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapnzcl.v 𝑉 = ( Base ‘ 𝑈 )
hdmapnzcl.o 0 = ( 0g𝑈 )
hdmapnzcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmapnzcl.q 𝑄 = ( 0g𝐶 )
hdmapnzcl.d 𝐷 = ( Base ‘ 𝐶 )
hdmapnzcl.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapnzcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapnzcl.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion hdmapnzcl ( 𝜑 → ( 𝑆𝑇 ) ∈ ( 𝐷 ∖ { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 hdmapnzcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapnzcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapnzcl.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapnzcl.o 0 = ( 0g𝑈 )
5 hdmapnzcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmapnzcl.q 𝑄 = ( 0g𝐶 )
7 hdmapnzcl.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmapnzcl.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmapnzcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmapnzcl.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
11 10 eldifad ( 𝜑𝑇𝑉 )
12 1 2 3 5 7 8 9 11 hdmapcl ( 𝜑 → ( 𝑆𝑇 ) ∈ 𝐷 )
13 eldifsni ( 𝑇 ∈ ( 𝑉 ∖ { 0 } ) → 𝑇0 )
14 10 13 syl ( 𝜑𝑇0 )
15 1 2 3 4 5 6 8 9 11 hdmapeq0 ( 𝜑 → ( ( 𝑆𝑇 ) = 𝑄𝑇 = 0 ) )
16 15 necon3bid ( 𝜑 → ( ( 𝑆𝑇 ) ≠ 𝑄𝑇0 ) )
17 14 16 mpbird ( 𝜑 → ( 𝑆𝑇 ) ≠ 𝑄 )
18 eldifsn ( ( 𝑆𝑇 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ↔ ( ( 𝑆𝑇 ) ∈ 𝐷 ∧ ( 𝑆𝑇 ) ≠ 𝑄 ) )
19 12 17 18 sylanbrc ( 𝜑 → ( 𝑆𝑇 ) ∈ ( 𝐷 ∖ { 𝑄 } ) )