Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap12b.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap12b.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap12b.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap12b.m |
⊢ 𝑀 = ( invg ‘ 𝑈 ) |
5 |
|
hdmap12b.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap12b.i |
⊢ 𝐼 = ( invg ‘ 𝐶 ) |
7 |
|
hdmap12b.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap12b.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap12b.x |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
10 |
1 5 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
12 |
1 2 3 5 11 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
15 |
11 13 14 6
|
lmodvnegid |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) = ( 0g ‘ 𝐶 ) ) |
16 |
10 12 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) = ( 0g ‘ 𝐶 ) ) |
17 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
20 |
3 18 19 4
|
lmodvnegid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉 ) → ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
21 |
17 9 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
22 |
3 4
|
lmodvnegcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉 ) → ( 𝑀 ‘ 𝑇 ) ∈ 𝑉 ) |
23 |
17 9 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) ∈ 𝑉 ) |
24 |
3 18
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑉 ∧ ( 𝑀 ‘ 𝑇 ) ∈ 𝑉 ) → ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) ∈ 𝑉 ) |
25 |
17 9 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) ∈ 𝑉 ) |
26 |
1 2 3 19 5 14 7 8 25
|
hdmapeq0 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) ) = ( 0g ‘ 𝐶 ) ↔ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) ) = ( 0g ‘ 𝐶 ) ) |
28 |
1 2 3 18 5 13 7 8 9 23
|
hdmapadd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) ) = ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ) ) |
29 |
16 27 28
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ) = ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) |
30 |
1 2 3 5 11 7 8 23
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ) |
31 |
11 6
|
lmodvnegcl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ) |
32 |
10 12 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ) |
33 |
11 13
|
lmodlcan |
⊢ ( ( 𝐶 ∈ LMod ∧ ( ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ∧ ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑆 ‘ 𝑇 ) ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ) = ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ↔ ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) |
34 |
10 30 32 12 33
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ) = ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ↔ ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) |
35 |
29 34
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) |