Metamath Proof Explorer


Theorem hdmapneg

Description: Part of proof of part 12 in Baer p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015)

Ref Expression
Hypotheses hdmap12b.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap12b.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap12b.v 𝑉 = ( Base ‘ 𝑈 )
hdmap12b.m 𝑀 = ( invg𝑈 )
hdmap12b.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap12b.i 𝐼 = ( invg𝐶 )
hdmap12b.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap12b.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap12b.x ( 𝜑𝑇𝑉 )
Assertion hdmapneg ( 𝜑 → ( 𝑆 ‘ ( 𝑀𝑇 ) ) = ( 𝐼 ‘ ( 𝑆𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 hdmap12b.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap12b.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap12b.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap12b.m 𝑀 = ( invg𝑈 )
5 hdmap12b.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap12b.i 𝐼 = ( invg𝐶 )
7 hdmap12b.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap12b.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmap12b.x ( 𝜑𝑇𝑉 )
10 1 5 8 lcdlmod ( 𝜑𝐶 ∈ LMod )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 1 2 3 5 11 7 8 9 hdmapcl ( 𝜑 → ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) )
13 eqid ( +g𝐶 ) = ( +g𝐶 )
14 eqid ( 0g𝐶 ) = ( 0g𝐶 )
15 11 13 14 6 lmodvnegid ( ( 𝐶 ∈ LMod ∧ ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) = ( 0g𝐶 ) )
16 10 12 15 syl2anc ( 𝜑 → ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) = ( 0g𝐶 ) )
17 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 eqid ( +g𝑈 ) = ( +g𝑈 )
19 eqid ( 0g𝑈 ) = ( 0g𝑈 )
20 3 18 19 4 lmodvnegid ( ( 𝑈 ∈ LMod ∧ 𝑇𝑉 ) → ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) = ( 0g𝑈 ) )
21 17 9 20 syl2anc ( 𝜑 → ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) = ( 0g𝑈 ) )
22 3 4 lmodvnegcl ( ( 𝑈 ∈ LMod ∧ 𝑇𝑉 ) → ( 𝑀𝑇 ) ∈ 𝑉 )
23 17 9 22 syl2anc ( 𝜑 → ( 𝑀𝑇 ) ∈ 𝑉 )
24 3 18 lmodvacl ( ( 𝑈 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝑀𝑇 ) ∈ 𝑉 ) → ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) ∈ 𝑉 )
25 17 9 23 24 syl3anc ( 𝜑 → ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) ∈ 𝑉 )
26 1 2 3 19 5 14 7 8 25 hdmapeq0 ( 𝜑 → ( ( 𝑆 ‘ ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) ) = ( 0g𝐶 ) ↔ ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) = ( 0g𝑈 ) ) )
27 21 26 mpbird ( 𝜑 → ( 𝑆 ‘ ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) ) = ( 0g𝐶 ) )
28 1 2 3 18 5 13 7 8 9 23 hdmapadd ( 𝜑 → ( 𝑆 ‘ ( 𝑇 ( +g𝑈 ) ( 𝑀𝑇 ) ) ) = ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝑆 ‘ ( 𝑀𝑇 ) ) ) )
29 16 27 28 3eqtr2rd ( 𝜑 → ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝑆 ‘ ( 𝑀𝑇 ) ) ) = ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) )
30 1 2 3 5 11 7 8 23 hdmapcl ( 𝜑 → ( 𝑆 ‘ ( 𝑀𝑇 ) ) ∈ ( Base ‘ 𝐶 ) )
31 11 6 lmodvnegcl ( ( 𝐶 ∈ LMod ∧ ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) ) → ( 𝐼 ‘ ( 𝑆𝑇 ) ) ∈ ( Base ‘ 𝐶 ) )
32 10 12 31 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝑆𝑇 ) ) ∈ ( Base ‘ 𝐶 ) )
33 11 13 lmodlcan ( ( 𝐶 ∈ LMod ∧ ( ( 𝑆 ‘ ( 𝑀𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ∧ ( 𝐼 ‘ ( 𝑆𝑇 ) ) ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑆𝑇 ) ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝑆 ‘ ( 𝑀𝑇 ) ) ) = ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) ↔ ( 𝑆 ‘ ( 𝑀𝑇 ) ) = ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) )
34 10 30 32 12 33 syl13anc ( 𝜑 → ( ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝑆 ‘ ( 𝑀𝑇 ) ) ) = ( ( 𝑆𝑇 ) ( +g𝐶 ) ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) ↔ ( 𝑆 ‘ ( 𝑀𝑇 ) ) = ( 𝐼 ‘ ( 𝑆𝑇 ) ) ) )
35 29 34 mpbid ( 𝜑 → ( 𝑆 ‘ ( 𝑀𝑇 ) ) = ( 𝐼 ‘ ( 𝑆𝑇 ) ) )