| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap12b.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap12b.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap12b.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap12b.m | ⊢ 𝑀  =  ( invg ‘ 𝑈 ) | 
						
							| 5 |  | hdmap12b.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmap12b.i | ⊢ 𝐼  =  ( invg ‘ 𝐶 ) | 
						
							| 7 |  | hdmap12b.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap12b.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmap12b.x | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 10 | 1 5 8 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 12 | 1 2 3 5 11 7 8 9 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 15 | 11 13 14 6 | lmodvnegid | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 16 | 10 12 15 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 17 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 20 | 3 18 19 4 | lmodvnegid | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑇  ∈  𝑉 )  →  ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 21 | 17 9 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 22 | 3 4 | lmodvnegcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑇  ∈  𝑉 )  →  ( 𝑀 ‘ 𝑇 )  ∈  𝑉 ) | 
						
							| 23 | 17 9 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑇 )  ∈  𝑉 ) | 
						
							| 24 | 3 18 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑇  ∈  𝑉  ∧  ( 𝑀 ‘ 𝑇 )  ∈  𝑉 )  →  ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) )  ∈  𝑉 ) | 
						
							| 25 | 17 9 23 24 | syl3anc | ⊢ ( 𝜑  →  ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) )  ∈  𝑉 ) | 
						
							| 26 | 1 2 3 19 5 14 7 8 25 | hdmapeq0 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) )  =  ( 0g ‘ 𝐶 )  ↔  ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) )  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 27 | 21 26 | mpbird | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 28 | 1 2 3 18 5 13 7 8 9 23 | hdmapadd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑇 ( +g ‘ 𝑈 ) ( 𝑀 ‘ 𝑇 ) ) )  =  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) ) ) | 
						
							| 29 | 16 27 28 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) )  =  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) | 
						
							| 30 | 1 2 3 5 11 7 8 23 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 31 | 11 6 | lmodvnegcl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 32 | 10 12 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 33 | 11 13 | lmodlcan | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐶 )  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐶 )  ∧  ( 𝑆 ‘ 𝑇 )  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) )  =  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) )  ↔  ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) )  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) | 
						
							| 34 | 10 30 32 12 33 | syl13anc | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) ) )  =  ( ( 𝑆 ‘ 𝑇 ) ( +g ‘ 𝐶 ) ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) )  ↔  ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) )  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) ) | 
						
							| 35 | 29 34 | mpbid | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑀 ‘ 𝑇 ) )  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝑇 ) ) ) |