Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap12c.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap12c.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap12c.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap12c.m |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmap12c.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap12c.n |
⊢ 𝑁 = ( -g ‘ 𝐶 ) |
7 |
|
hdmap12c.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap12c.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap12c.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmap12c.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝑈 ) = ( invg ‘ 𝑈 ) |
13 |
3 11 12 4
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
14 |
9 10 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑆 ‘ ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
17 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
3 12
|
lmodvnegcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ∈ 𝑉 ) |
19 |
17 10 18
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ∈ 𝑉 ) |
20 |
1 2 3 11 5 16 7 8 9 19
|
hdmapadd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) = ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) ) |
21 |
|
eqid |
⊢ ( invg ‘ 𝐶 ) = ( invg ‘ 𝐶 ) |
22 |
1 2 3 12 5 21 7 8 10
|
hdmapneg |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) = ( ( invg ‘ 𝐶 ) ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( 𝑆 ‘ ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) = ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( ( invg ‘ 𝐶 ) ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
24 |
15 20 23
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 − 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( ( invg ‘ 𝐶 ) ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
26 |
1 2 3 5 25 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) |
27 |
1 2 3 5 25 7 8 10
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ 𝐶 ) ) |
28 |
25 16 21 6
|
grpsubval |
⊢ ( ( ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝑋 ) 𝑁 ( 𝑆 ‘ 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( ( invg ‘ 𝐶 ) ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) 𝑁 ( 𝑆 ‘ 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ( +g ‘ 𝐶 ) ( ( invg ‘ 𝐶 ) ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
30 |
24 29
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 − 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) 𝑁 ( 𝑆 ‘ 𝑌 ) ) ) |