Metamath Proof Explorer


Theorem hdmapsub

Description: Part of proof of part 12 in Baer p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap12c.h H=LHypK
hdmap12c.u U=DVecHKW
hdmap12c.v V=BaseU
hdmap12c.m -˙=-U
hdmap12c.c C=LCDualKW
hdmap12c.n N=-C
hdmap12c.s S=HDMapKW
hdmap12c.k φKHLWH
hdmap12c.x φXV
hdmap12c.y φYV
Assertion hdmapsub φSX-˙Y=SXNSY

Proof

Step Hyp Ref Expression
1 hdmap12c.h H=LHypK
2 hdmap12c.u U=DVecHKW
3 hdmap12c.v V=BaseU
4 hdmap12c.m -˙=-U
5 hdmap12c.c C=LCDualKW
6 hdmap12c.n N=-C
7 hdmap12c.s S=HDMapKW
8 hdmap12c.k φKHLWH
9 hdmap12c.x φXV
10 hdmap12c.y φYV
11 eqid +U=+U
12 eqid invgU=invgU
13 3 11 12 4 grpsubval XVYVX-˙Y=X+UinvgUY
14 9 10 13 syl2anc φX-˙Y=X+UinvgUY
15 14 fveq2d φSX-˙Y=SX+UinvgUY
16 eqid +C=+C
17 1 2 8 dvhlmod φULMod
18 3 12 lmodvnegcl ULModYVinvgUYV
19 17 10 18 syl2anc φinvgUYV
20 1 2 3 11 5 16 7 8 9 19 hdmapadd φSX+UinvgUY=SX+CSinvgUY
21 eqid invgC=invgC
22 1 2 3 12 5 21 7 8 10 hdmapneg φSinvgUY=invgCSY
23 22 oveq2d φSX+CSinvgUY=SX+CinvgCSY
24 15 20 23 3eqtrd φSX-˙Y=SX+CinvgCSY
25 eqid BaseC=BaseC
26 1 2 3 5 25 7 8 9 hdmapcl φSXBaseC
27 1 2 3 5 25 7 8 10 hdmapcl φSYBaseC
28 25 16 21 6 grpsubval SXBaseCSYBaseCSXNSY=SX+CinvgCSY
29 26 27 28 syl2anc φSXNSY=SX+CinvgCSY
30 24 29 eqtr4d φSX-˙Y=SXNSY