Metamath Proof Explorer


Theorem hdmap11

Description: Part of proof of part 12 in Baer p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap12d.h H = LHyp K
hdmap12d.u U = DVecH K W
hdmap12d.v V = Base U
hdmap12d.s S = HDMap K W
hdmap12d.k φ K HL W H
hdmap12d.x φ X V
hdmap12d.y φ Y V
Assertion hdmap11 φ S X = S Y X = Y

Proof

Step Hyp Ref Expression
1 hdmap12d.h H = LHyp K
2 hdmap12d.u U = DVecH K W
3 hdmap12d.v V = Base U
4 hdmap12d.s S = HDMap K W
5 hdmap12d.k φ K HL W H
6 hdmap12d.x φ X V
7 hdmap12d.y φ Y V
8 eqid - U = - U
9 eqid LCDual K W = LCDual K W
10 eqid - LCDual K W = - LCDual K W
11 1 2 3 8 9 10 4 5 6 7 hdmapsub φ S X - U Y = S X - LCDual K W S Y
12 11 eqeq1d φ S X - U Y = 0 LCDual K W S X - LCDual K W S Y = 0 LCDual K W
13 eqid 0 U = 0 U
14 eqid 0 LCDual K W = 0 LCDual K W
15 1 2 5 dvhlmod φ U LMod
16 3 8 lmodvsubcl U LMod X V Y V X - U Y V
17 15 6 7 16 syl3anc φ X - U Y V
18 1 2 3 13 9 14 4 5 17 hdmapeq0 φ S X - U Y = 0 LCDual K W X - U Y = 0 U
19 1 9 5 lcdlmod φ LCDual K W LMod
20 lmodgrp LCDual K W LMod LCDual K W Grp
21 19 20 syl φ LCDual K W Grp
22 eqid Base LCDual K W = Base LCDual K W
23 1 2 3 9 22 4 5 6 hdmapcl φ S X Base LCDual K W
24 1 2 3 9 22 4 5 7 hdmapcl φ S Y Base LCDual K W
25 22 14 10 grpsubeq0 LCDual K W Grp S X Base LCDual K W S Y Base LCDual K W S X - LCDual K W S Y = 0 LCDual K W S X = S Y
26 21 23 24 25 syl3anc φ S X - LCDual K W S Y = 0 LCDual K W S X = S Y
27 12 18 26 3bitr3rd φ S X = S Y X - U Y = 0 U
28 lmodgrp U LMod U Grp
29 15 28 syl φ U Grp
30 3 13 8 grpsubeq0 U Grp X V Y V X - U Y = 0 U X = Y
31 29 6 7 30 syl3anc φ X - U Y = 0 U X = Y
32 27 31 bitrd φ S X = S Y X = Y