| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap12d.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap12d.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap12d.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap12d.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmap12d.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | hdmap12d.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | hdmap12d.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 11 | 1 2 3 8 9 10 4 5 6 7 | hdmapsub | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( ( 𝑆 ‘ 𝑋 ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 15 | 1 2 5 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 16 | 3 8 | lmodvsubcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  ∈  𝑉 ) | 
						
							| 17 | 15 6 7 16 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  ∈  𝑉 ) | 
						
							| 18 | 1 2 3 13 9 14 4 5 17 | hdmapeq0 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 19 | 1 9 5 | lcdlmod | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 20 |  | lmodgrp | ⊢ ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  Grp ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  Grp ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 23 | 1 2 3 9 22 4 5 6 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 24 | 1 2 3 9 22 4 5 7 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 25 | 22 14 10 | grpsubeq0 | ⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  Grp  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ( ( 𝑆 ‘ 𝑋 ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 26 | 21 23 24 25 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ( -g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 27 | 12 18 26 | 3bitr3rd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑌 )  ↔  ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 28 |  | lmodgrp | ⊢ ( 𝑈  ∈  LMod  →  𝑈  ∈  Grp ) | 
						
							| 29 | 15 28 | syl | ⊢ ( 𝜑  →  𝑈  ∈  Grp ) | 
						
							| 30 | 3 13 8 | grpsubeq0 | ⊢ ( ( 𝑈  ∈  Grp  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  =  ( 0g ‘ 𝑈 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 31 | 29 6 7 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 )  =  ( 0g ‘ 𝑈 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 32 | 27 31 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ 𝑌 )  ↔  𝑋  =  𝑌 ) ) |