Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap12d.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap12d.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap12d.v |
|- V = ( Base ` U ) |
4 |
|
hdmap12d.s |
|- S = ( ( HDMap ` K ) ` W ) |
5 |
|
hdmap12d.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
hdmap12d.x |
|- ( ph -> X e. V ) |
7 |
|
hdmap12d.y |
|- ( ph -> Y e. V ) |
8 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
9 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
10 |
|
eqid |
|- ( -g ` ( ( LCDual ` K ) ` W ) ) = ( -g ` ( ( LCDual ` K ) ` W ) ) |
11 |
1 2 3 8 9 10 4 5 6 7
|
hdmapsub |
|- ( ph -> ( S ` ( X ( -g ` U ) Y ) ) = ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ) |
12 |
11
|
eqeq1d |
|- ( ph -> ( ( S ` ( X ( -g ` U ) Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) ) |
13 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
14 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
15 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
3 8
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X ( -g ` U ) Y ) e. V ) |
17 |
15 6 7 16
|
syl3anc |
|- ( ph -> ( X ( -g ` U ) Y ) e. V ) |
18 |
1 2 3 13 9 14 4 5 17
|
hdmapeq0 |
|- ( ph -> ( ( S ` ( X ( -g ` U ) Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( X ( -g ` U ) Y ) = ( 0g ` U ) ) ) |
19 |
1 9 5
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
20 |
|
lmodgrp |
|- ( ( ( LCDual ` K ) ` W ) e. LMod -> ( ( LCDual ` K ) ` W ) e. Grp ) |
21 |
19 20
|
syl |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. Grp ) |
22 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
23 |
1 2 3 9 22 4 5 6
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
24 |
1 2 3 9 22 4 5 7
|
hdmapcl |
|- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
25 |
22 14 10
|
grpsubeq0 |
|- ( ( ( ( LCDual ` K ) ` W ) e. Grp /\ ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) /\ ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( S ` Y ) ) ) |
26 |
21 23 24 25
|
syl3anc |
|- ( ph -> ( ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( S ` Y ) ) ) |
27 |
12 18 26
|
3bitr3rd |
|- ( ph -> ( ( S ` X ) = ( S ` Y ) <-> ( X ( -g ` U ) Y ) = ( 0g ` U ) ) ) |
28 |
|
lmodgrp |
|- ( U e. LMod -> U e. Grp ) |
29 |
15 28
|
syl |
|- ( ph -> U e. Grp ) |
30 |
3 13 8
|
grpsubeq0 |
|- ( ( U e. Grp /\ X e. V /\ Y e. V ) -> ( ( X ( -g ` U ) Y ) = ( 0g ` U ) <-> X = Y ) ) |
31 |
29 6 7 30
|
syl3anc |
|- ( ph -> ( ( X ( -g ` U ) Y ) = ( 0g ` U ) <-> X = Y ) ) |
32 |
27 31
|
bitrd |
|- ( ph -> ( ( S ` X ) = ( S ` Y ) <-> X = Y ) ) |