| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap12d.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap12d.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap12d.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap12d.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmap12d.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | hdmap12d.x |  |-  ( ph -> X e. V ) | 
						
							| 7 |  | hdmap12d.y |  |-  ( ph -> Y e. V ) | 
						
							| 8 |  | eqid |  |-  ( -g ` U ) = ( -g ` U ) | 
						
							| 9 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 10 |  | eqid |  |-  ( -g ` ( ( LCDual ` K ) ` W ) ) = ( -g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 11 | 1 2 3 8 9 10 4 5 6 7 | hdmapsub |  |-  ( ph -> ( S ` ( X ( -g ` U ) Y ) ) = ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( ph -> ( ( S ` ( X ( -g ` U ) Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 15 | 1 2 5 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 16 | 3 8 | lmodvsubcl |  |-  ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X ( -g ` U ) Y ) e. V ) | 
						
							| 17 | 15 6 7 16 | syl3anc |  |-  ( ph -> ( X ( -g ` U ) Y ) e. V ) | 
						
							| 18 | 1 2 3 13 9 14 4 5 17 | hdmapeq0 |  |-  ( ph -> ( ( S ` ( X ( -g ` U ) Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( X ( -g ` U ) Y ) = ( 0g ` U ) ) ) | 
						
							| 19 | 1 9 5 | lcdlmod |  |-  ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) | 
						
							| 20 |  | lmodgrp |  |-  ( ( ( LCDual ` K ) ` W ) e. LMod -> ( ( LCDual ` K ) ` W ) e. Grp ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( ( LCDual ` K ) ` W ) e. Grp ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 23 | 1 2 3 9 22 4 5 6 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 24 | 1 2 3 9 22 4 5 7 | hdmapcl |  |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 25 | 22 14 10 | grpsubeq0 |  |-  ( ( ( ( LCDual ` K ) ` W ) e. Grp /\ ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) /\ ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( S ` Y ) ) ) | 
						
							| 26 | 21 23 24 25 | syl3anc |  |-  ( ph -> ( ( ( S ` X ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( S ` Y ) ) ) | 
						
							| 27 | 12 18 26 | 3bitr3rd |  |-  ( ph -> ( ( S ` X ) = ( S ` Y ) <-> ( X ( -g ` U ) Y ) = ( 0g ` U ) ) ) | 
						
							| 28 |  | lmodgrp |  |-  ( U e. LMod -> U e. Grp ) | 
						
							| 29 | 15 28 | syl |  |-  ( ph -> U e. Grp ) | 
						
							| 30 | 3 13 8 | grpsubeq0 |  |-  ( ( U e. Grp /\ X e. V /\ Y e. V ) -> ( ( X ( -g ` U ) Y ) = ( 0g ` U ) <-> X = Y ) ) | 
						
							| 31 | 29 6 7 30 | syl3anc |  |-  ( ph -> ( ( X ( -g ` U ) Y ) = ( 0g ` U ) <-> X = Y ) ) | 
						
							| 32 | 27 31 | bitrd |  |-  ( ph -> ( ( S ` X ) = ( S ` Y ) <-> X = Y ) ) |