| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap12a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap12a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap12a.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap12a.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
hdmap12a.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmap12a.q |
|- Q = ( 0g ` C ) |
| 7 |
|
hdmap12a.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 8 |
|
hdmap12a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
hdmap12a.x |
|- ( ph -> T e. V ) |
| 10 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 11 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
| 12 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 13 |
1 2 3 10 5 11 12 7 8 9
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { T } ) ) = ( ( LSpan ` C ) ` { ( S ` T ) } ) ) |
| 14 |
1 12 2 4 5 6 8
|
mapd0 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` { .0. } ) = { Q } ) |
| 15 |
13 14
|
eqeq12d |
|- ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { T } ) ) = ( ( ( mapd ` K ) ` W ) ` { .0. } ) <-> ( ( LSpan ` C ) ` { ( S ` T ) } ) = { Q } ) ) |
| 16 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 17 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 18 |
3 16 10
|
lspsncl |
|- ( ( U e. LMod /\ T e. V ) -> ( ( LSpan ` U ) ` { T } ) e. ( LSubSp ` U ) ) |
| 19 |
17 9 18
|
syl2anc |
|- ( ph -> ( ( LSpan ` U ) ` { T } ) e. ( LSubSp ` U ) ) |
| 20 |
4 16
|
lsssn0 |
|- ( U e. LMod -> { .0. } e. ( LSubSp ` U ) ) |
| 21 |
17 20
|
syl |
|- ( ph -> { .0. } e. ( LSubSp ` U ) ) |
| 22 |
1 2 16 12 8 19 21
|
mapd11 |
|- ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { T } ) ) = ( ( ( mapd ` K ) ` W ) ` { .0. } ) <-> ( ( LSpan ` U ) ` { T } ) = { .0. } ) ) |
| 23 |
1 5 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 24 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 25 |
1 2 3 5 24 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` T ) e. ( Base ` C ) ) |
| 26 |
24 6 11
|
lspsneq0 |
|- ( ( C e. LMod /\ ( S ` T ) e. ( Base ` C ) ) -> ( ( ( LSpan ` C ) ` { ( S ` T ) } ) = { Q } <-> ( S ` T ) = Q ) ) |
| 27 |
23 25 26
|
syl2anc |
|- ( ph -> ( ( ( LSpan ` C ) ` { ( S ` T ) } ) = { Q } <-> ( S ` T ) = Q ) ) |
| 28 |
15 22 27
|
3bitr3rd |
|- ( ph -> ( ( S ` T ) = Q <-> ( ( LSpan ` U ) ` { T } ) = { .0. } ) ) |
| 29 |
3 4 10
|
lspsneq0 |
|- ( ( U e. LMod /\ T e. V ) -> ( ( ( LSpan ` U ) ` { T } ) = { .0. } <-> T = .0. ) ) |
| 30 |
17 9 29
|
syl2anc |
|- ( ph -> ( ( ( LSpan ` U ) ` { T } ) = { .0. } <-> T = .0. ) ) |
| 31 |
28 30
|
bitrd |
|- ( ph -> ( ( S ` T ) = Q <-> T = .0. ) ) |