Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap10.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap10.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap10.v |
|- V = ( Base ` U ) |
4 |
|
hdmap10.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmap10.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmap10.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmap10.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmap10.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmap10.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmap10.t |
|- ( ph -> T e. V ) |
11 |
|
sneq |
|- ( T = ( 0g ` U ) -> { T } = { ( 0g ` U ) } ) |
12 |
11
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( N ` { T } ) = ( N ` { ( 0g ` U ) } ) ) |
13 |
12
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( M ` ( N ` { T } ) ) = ( M ` ( N ` { ( 0g ` U ) } ) ) ) |
14 |
|
fveq2 |
|- ( T = ( 0g ` U ) -> ( S ` T ) = ( S ` ( 0g ` U ) ) ) |
15 |
14
|
sneqd |
|- ( T = ( 0g ` U ) -> { ( S ` T ) } = { ( S ` ( 0g ` U ) ) } ) |
16 |
15
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( L ` { ( S ` T ) } ) = ( L ` { ( S ` ( 0g ` U ) ) } ) ) |
17 |
13 16
|
eqeq12d |
|- ( T = ( 0g ` U ) -> ( ( M ` ( N ` { T } ) ) = ( L ` { ( S ` T ) } ) <-> ( M ` ( N ` { ( 0g ` U ) } ) ) = ( L ` { ( S ` ( 0g ` U ) ) } ) ) ) |
18 |
9
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
20 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
21 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
22 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
23 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
24 |
10
|
anim1i |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
25 |
|
eldifsn |
|- ( T e. ( V \ { ( 0g ` U ) } ) <-> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
26 |
24 25
|
sylibr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> T e. ( V \ { ( 0g ` U ) } ) ) |
27 |
1 2 3 4 5 6 7 8 18 19 20 21 22 23 26
|
hdmap10lem |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( M ` ( N ` { T } ) ) = ( L ` { ( S ` T ) } ) ) |
28 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
29 |
20 4
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
30 |
28 29
|
syl |
|- ( ph -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
31 |
30
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( 0g ` U ) } ) ) = ( M ` { ( 0g ` U ) } ) ) |
32 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
33 |
1 7 2 20 5 32 9
|
mapd0 |
|- ( ph -> ( M ` { ( 0g ` U ) } ) = { ( 0g ` C ) } ) |
34 |
1 2 20 5 32 8 9
|
hdmapval0 |
|- ( ph -> ( S ` ( 0g ` U ) ) = ( 0g ` C ) ) |
35 |
34
|
sneqd |
|- ( ph -> { ( S ` ( 0g ` U ) ) } = { ( 0g ` C ) } ) |
36 |
35
|
fveq2d |
|- ( ph -> ( L ` { ( S ` ( 0g ` U ) ) } ) = ( L ` { ( 0g ` C ) } ) ) |
37 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
38 |
32 6
|
lspsn0 |
|- ( C e. LMod -> ( L ` { ( 0g ` C ) } ) = { ( 0g ` C ) } ) |
39 |
37 38
|
syl |
|- ( ph -> ( L ` { ( 0g ` C ) } ) = { ( 0g ` C ) } ) |
40 |
36 39
|
eqtr2d |
|- ( ph -> { ( 0g ` C ) } = ( L ` { ( S ` ( 0g ` U ) ) } ) ) |
41 |
31 33 40
|
3eqtrd |
|- ( ph -> ( M ` ( N ` { ( 0g ` U ) } ) ) = ( L ` { ( S ` ( 0g ` U ) ) } ) ) |
42 |
17 27 41
|
pm2.61ne |
|- ( ph -> ( M ` ( N ` { T } ) ) = ( L ` { ( S ` T ) } ) ) |