Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap11.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap11.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap11.v |
|- V = ( Base ` U ) |
4 |
|
hdmap11.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmap11.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmap11.a |
|- .+b = ( +g ` C ) |
7 |
|
hdmap11.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmap11.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmap11.x |
|- ( ph -> X e. V ) |
10 |
|
hdmap11.y |
|- ( ph -> Y e. V ) |
11 |
|
hdmap11.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
12 |
|
hdmap11.o |
|- .0. = ( 0g ` U ) |
13 |
|
hdmap11.n |
|- N = ( LSpan ` U ) |
14 |
|
hdmap11.d |
|- D = ( Base ` C ) |
15 |
|
hdmap11.l |
|- L = ( LSpan ` C ) |
16 |
|
hdmap11.m |
|- M = ( ( mapd ` K ) ` W ) |
17 |
|
hdmap11.j |
|- J = ( ( HVMap ` K ) ` W ) |
18 |
|
hdmap11.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
19 |
|
hdmap11lem0.1a |
|- ( ph -> z e. V ) |
20 |
|
hdmap11lem0.6 |
|- ( ph -> -. z e. ( N ` { X , Y } ) ) |
21 |
|
hdmap11lem0.2a |
|- ( ph -> ( N ` { z } ) =/= ( N ` { E } ) ) |
22 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
25 |
1 23 24 2 3 12 11 8
|
dvheveccl |
|- ( ph -> E e. ( V \ { .0. } ) ) |
26 |
1 2 3 12 5 14 22 17 8 25
|
hvmapcl2 |
|- ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) |
27 |
26
|
eldifad |
|- ( ph -> ( J ` E ) e. D ) |
28 |
1 2 3 12 13 5 15 16 17 8 25
|
mapdhvmap |
|- ( ph -> ( M ` ( N ` { E } ) ) = ( L ` { ( J ` E ) } ) ) |
29 |
21
|
necomd |
|- ( ph -> ( N ` { E } ) =/= ( N ` { z } ) ) |
30 |
1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19
|
hdmap1cl |
|- ( ph -> ( I ` <. E , ( J ` E ) , z >. ) e. D ) |
31 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
32 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
33 |
3 31 13 32 9 10
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) |
34 |
12 31 32 33 19 20
|
lssneln0 |
|- ( ph -> z e. ( V \ { .0. } ) ) |
35 |
|
eqidd |
|- ( ph -> ( I ` <. E , ( J ` E ) , z >. ) = ( I ` <. E , ( J ` E ) , z >. ) ) |
36 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
37 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
38 |
1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28
|
hdmap1eq |
|- ( ph -> ( ( I ` <. E , ( J ` E ) , z >. ) = ( I ` <. E , ( J ` E ) , z >. ) <-> ( ( M ` ( N ` { z } ) ) = ( L ` { ( I ` <. E , ( J ` E ) , z >. ) } ) /\ ( M ` ( N ` { ( E ( -g ` U ) z ) } ) ) = ( L ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , z >. ) ) } ) ) ) ) |
39 |
35 38
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { z } ) ) = ( L ` { ( I ` <. E , ( J ` E ) , z >. ) } ) /\ ( M ` ( N ` { ( E ( -g ` U ) z ) } ) ) = ( L ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , z >. ) ) } ) ) ) |
40 |
39
|
simpld |
|- ( ph -> ( M ` ( N ` { z } ) ) = ( L ` { ( I ` <. E , ( J ` E ) , z >. ) } ) ) |
41 |
1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40
|
hdmap1l6 |
|- ( ph -> ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , ( X .+ Y ) >. ) = ( ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , X >. ) .+b ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , Y >. ) ) ) |
42 |
3 4
|
lmodvacl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
43 |
32 9 10 42
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. V ) |
44 |
1 2 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
45 |
25
|
eldifad |
|- ( ph -> E e. V ) |
46 |
3 4 13 32 9 10
|
lspprvacl |
|- ( ph -> ( X .+ Y ) e. ( N ` { X , Y } ) ) |
47 |
31 13 32 33 46
|
lspsnel5a |
|- ( ph -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X , Y } ) ) |
48 |
47 20
|
ssneldd |
|- ( ph -> -. z e. ( N ` { ( X .+ Y ) } ) ) |
49 |
3 13 32 19 43 48
|
lspsnne2 |
|- ( ph -> ( N ` { z } ) =/= ( N ` { ( X .+ Y ) } ) ) |
50 |
3 13 12 44 45 43 34 21 49
|
hdmaplem4 |
|- ( ph -> -. z e. ( ( N ` { E } ) u. ( N ` { ( X .+ Y ) } ) ) ) |
51 |
1 11 2 3 13 5 14 17 18 7 8 43 19 50
|
hdmapval2 |
|- ( ph -> ( S ` ( X .+ Y ) ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , ( X .+ Y ) >. ) ) |
52 |
3 13 44 19 9 10 20
|
lspindpi |
|- ( ph -> ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { Y } ) ) ) |
53 |
52
|
simpld |
|- ( ph -> ( N ` { z } ) =/= ( N ` { X } ) ) |
54 |
3 13 12 44 45 9 34 21 53
|
hdmaplem4 |
|- ( ph -> -. z e. ( ( N ` { E } ) u. ( N ` { X } ) ) ) |
55 |
1 11 2 3 13 5 14 17 18 7 8 9 19 54
|
hdmapval2 |
|- ( ph -> ( S ` X ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , X >. ) ) |
56 |
52
|
simprd |
|- ( ph -> ( N ` { z } ) =/= ( N ` { Y } ) ) |
57 |
3 13 12 44 45 10 34 21 56
|
hdmaplem4 |
|- ( ph -> -. z e. ( ( N ` { E } ) u. ( N ` { Y } ) ) ) |
58 |
1 11 2 3 13 5 14 17 18 7 8 10 19 57
|
hdmapval2 |
|- ( ph -> ( S ` Y ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , Y >. ) ) |
59 |
55 58
|
oveq12d |
|- ( ph -> ( ( S ` X ) .+b ( S ` Y ) ) = ( ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , X >. ) .+b ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , Y >. ) ) ) |
60 |
41 51 59
|
3eqtr4d |
|- ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) ) |