| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap11.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap11.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap11.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap11.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap11.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmap11.a |  |-  .+b = ( +g ` C ) | 
						
							| 7 |  | hdmap11.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmap11.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmap11.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | hdmap11.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | eqid |  |-  <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 12 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 13 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 14 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 15 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 16 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) | 
						
							| 18 |  | eqid |  |-  ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmap11lem2 |  |-  ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) ) |