Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap11.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap11.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap11.v |
|- V = ( Base ` U ) |
4 |
|
hdmap11.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmap11.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmap11.a |
|- .+b = ( +g ` C ) |
7 |
|
hdmap11.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmap11.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmap11.x |
|- ( ph -> X e. V ) |
10 |
|
hdmap11.y |
|- ( ph -> Y e. V ) |
11 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
12 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
13 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
15 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
16 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
17 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
18 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmap11lem2 |
|- ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) ) |