Metamath Proof Explorer


Theorem hdmapadd

Description: Part 11 in Baer p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap11.h
|- H = ( LHyp ` K )
hdmap11.u
|- U = ( ( DVecH ` K ) ` W )
hdmap11.v
|- V = ( Base ` U )
hdmap11.p
|- .+ = ( +g ` U )
hdmap11.c
|- C = ( ( LCDual ` K ) ` W )
hdmap11.a
|- .+b = ( +g ` C )
hdmap11.s
|- S = ( ( HDMap ` K ) ` W )
hdmap11.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap11.x
|- ( ph -> X e. V )
hdmap11.y
|- ( ph -> Y e. V )
Assertion hdmapadd
|- ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) )

Proof

Step Hyp Ref Expression
1 hdmap11.h
 |-  H = ( LHyp ` K )
2 hdmap11.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap11.v
 |-  V = ( Base ` U )
4 hdmap11.p
 |-  .+ = ( +g ` U )
5 hdmap11.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmap11.a
 |-  .+b = ( +g ` C )
7 hdmap11.s
 |-  S = ( ( HDMap ` K ) ` W )
8 hdmap11.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 hdmap11.x
 |-  ( ph -> X e. V )
10 hdmap11.y
 |-  ( ph -> Y e. V )
11 eqid
 |-  <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
12 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
13 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
14 eqid
 |-  ( Base ` C ) = ( Base ` C )
15 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
16 eqid
 |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W )
17 eqid
 |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W )
18 eqid
 |-  ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap11lem2
 |-  ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) )