Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap11.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap11.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap11.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap11.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
7 |
|
hdmap11.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmap11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
eqid |
⊢ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmap11lem2 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) ) |