Metamath Proof Explorer


Theorem hdmapadd

Description: Part 11 in Baer p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap11.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.v 𝑉 = ( Base ‘ 𝑈 )
hdmap11.p + = ( +g𝑈 )
hdmap11.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.a = ( +g𝐶 )
hdmap11.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap11.x ( 𝜑𝑋𝑉 )
hdmap11.y ( 𝜑𝑌𝑉 )
Assertion hdmapadd ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆𝑋 ) ( 𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hdmap11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap11.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap11.p + = ( +g𝑈 )
5 hdmap11.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap11.a = ( +g𝐶 )
7 hdmap11.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmap11.x ( 𝜑𝑋𝑉 )
10 hdmap11.y ( 𝜑𝑌𝑉 )
11 eqid ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
12 eqid ( 0g𝑈 ) = ( 0g𝑈 )
13 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
14 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
15 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
16 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
17 eqid ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
18 eqid ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap11lem2 ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆𝑋 ) ( 𝑆𝑌 ) ) )