| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap11.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap11.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap11.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap11.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap11.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmap11.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 7 |  | hdmap11.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap11.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmap11.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | hdmap11.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | hdmap11.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 12 |  | hdmap11.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 13 |  | hdmap11.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 14 |  | hdmap11.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 15 |  | hdmap11.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 16 |  | hdmap11.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | hdmap11.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 |  | hdmap11.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 | 1 2 3 13 8 9 10 | dvh3dim | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 21 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 22 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑈  ∈  LMod ) | 
						
							| 24 | 3 21 13 22 9 10 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 27 | 21 13 23 25 26 | ellspsn5 | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝑁 ‘ { 𝐸 } )  ⊆  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 28 | 27 | ssneld | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 29 | 28 | ancld | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) ) | 
						
							| 30 | 29 | reximdv | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) ) | 
						
							| 31 | 20 30 | mpd | ⊢ ( ( 𝜑  ∧  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 33 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 34 | 1 32 33 2 3 12 11 8 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 35 | 34 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 36 | 1 2 3 13 8 35 10 | dvh3dim | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 38 |  | preq1 | ⊢ ( 𝑋  =   0   →  { 𝑋 ,  𝑌 }  =  {  0  ,  𝑌 } ) | 
						
							| 39 |  | prcom | ⊢ {  0  ,  𝑌 }  =  { 𝑌 ,   0  } | 
						
							| 40 | 38 39 | eqtrdi | ⊢ ( 𝑋  =   0   →  { 𝑋 ,  𝑌 }  =  { 𝑌 ,   0  } ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( 𝑋  =   0   →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ { 𝑌 ,   0  } ) ) | 
						
							| 42 | 3 12 13 22 10 | lsppr0 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,   0  } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 43 | 41 42 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 44 | 3 21 13 22 35 10 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 45 | 3 13 22 35 10 | lspprid2 | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 46 | 21 13 22 44 45 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 48 | 43 47 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 49 | 48 | ssneld | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 50 | 3 13 22 35 10 | lspprid1 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 51 | 21 13 22 44 50 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝐸 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑌 } ) ) | 
						
							| 53 | 52 | ssneld | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 54 | 49 53 | jcad | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) ) | 
						
							| 55 | 54 | reximdv | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑌 } )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) ) | 
						
							| 56 | 37 55 | mpd | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 57 | 56 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  =   0  )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 58 | 3 4 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐸  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  →  ( 𝐸  +  𝑋 )  ∈  𝑉 ) | 
						
							| 59 | 22 35 9 58 | syl3anc | ⊢ ( 𝜑  →  ( 𝐸  +  𝑋 )  ∈  𝑉 ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ( 𝐸  +  𝑋 )  ∈  𝑉 ) | 
						
							| 61 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑈  ∈  LMod ) | 
						
							| 62 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 63 | 3 13 22 9 10 | lspprid1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 64 | 63 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 65 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝐸  ∈  𝑉 ) | 
						
							| 66 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 67 | 3 4 21 61 62 64 65 66 | lssvancl2 | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 68 | 3 21 13 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐸  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 69 | 22 35 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ( 𝑁 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 71 | 3 13 | lspsnid | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐸  ∈  𝑉 )  →  𝐸  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 72 | 22 35 71 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 73 | 72 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝐸  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 74 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑋  ∈  𝑉 ) | 
						
							| 75 | 1 2 8 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 76 | 75 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑈  ∈  LVec ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑋  ≠   0  ) | 
						
							| 78 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠   0  ) ) | 
						
							| 79 | 74 77 78 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 80 | 21 13 22 24 63 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 81 | 80 | sseld | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( 𝑁 ‘ { 𝑋 } )  →  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 82 | 81 | con3dimp | ⊢ ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 84 | 3 12 13 76 65 79 83 | lspsnnecom | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 85 | 3 4 21 61 70 73 74 84 | lssvancl1 | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 86 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝐸  +  𝑋 )  →  ( 𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ↔  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 87 | 86 | notbid | ⊢ ( 𝑧  =  ( 𝐸  +  𝑋 )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ↔  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 88 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝐸  +  𝑋 )  →  ( 𝑧  ∈  ( 𝑁 ‘ { 𝐸 } )  ↔  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 89 | 88 | notbid | ⊢ ( 𝑧  =  ( 𝐸  +  𝑋 )  →  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } )  ↔  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 90 | 87 89 | anbi12d | ⊢ ( 𝑧  =  ( 𝐸  +  𝑋 )  →  ( ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) )  ↔  ( ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) ) | 
						
							| 91 | 90 | rspcev | ⊢ ( ( ( 𝐸  +  𝑋 )  ∈  𝑉  ∧  ( ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  ( 𝐸  +  𝑋 )  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 92 | 60 67 85 91 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑋  ≠   0  )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 93 | 57 92 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ¬  𝐸  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 94 | 31 93 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 95 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 96 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 97 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 98 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 99 |  | simp3l | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 100 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  𝑈  ∈  LMod ) | 
						
							| 101 | 35 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  𝐸  ∈  𝑉 ) | 
						
							| 102 |  | simp3r | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 103 | 3 13 100 98 101 102 | lspsnne2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 104 | 1 2 3 4 5 6 7 95 96 97 11 12 13 14 15 16 17 18 98 99 103 | hdmap11lem1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) ) )  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 105 | 104 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  𝑉 ( ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝐸 } ) )  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 106 | 94 105 | mpd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) |