Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap11.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap11.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap11.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap11.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
7 |
|
hdmap11.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmap11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
hdmap11.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
12 |
|
hdmap11.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
hdmap11.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
14 |
|
hdmap11.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
15 |
|
hdmap11.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
16 |
|
hdmap11.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
hdmap11.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
hdmap11.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
1 2 3 13 8 9 10
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
21 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
22 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑈 ∈ LMod ) |
24 |
3 21 13 22 9 10
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
27 |
21 13 23 25 26
|
lspsnel5a |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
28 |
27
|
ssneld |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
29 |
28
|
ancld |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) ) |
30 |
29
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) ) |
31 |
20 30
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
33 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
34 |
1 32 33 2 3 12 11 8
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
34
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
36 |
1 2 3 13 8 35 10
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
38 |
|
preq1 |
⊢ ( 𝑋 = 0 → { 𝑋 , 𝑌 } = { 0 , 𝑌 } ) |
39 |
|
prcom |
⊢ { 0 , 𝑌 } = { 𝑌 , 0 } |
40 |
38 39
|
eqtrdi |
⊢ ( 𝑋 = 0 → { 𝑋 , 𝑌 } = { 𝑌 , 0 } ) |
41 |
40
|
fveq2d |
⊢ ( 𝑋 = 0 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 0 } ) ) |
42 |
3 12 13 22 10
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 0 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
43 |
41 42
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
44 |
3 21 13 22 35 10
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
45 |
3 13 22 35 10
|
lspprid2 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
46 |
21 13 22 44 45
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
48 |
43 47
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
49 |
48
|
ssneld |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
50 |
3 13 22 35 10
|
lspprid1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
51 |
21 13 22 44 50
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) ) |
53 |
52
|
ssneld |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
54 |
49 53
|
jcad |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) ) |
55 |
54
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 , 𝑌 } ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) ) |
56 |
37 55
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 = 0 ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
58 |
3 4
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐸 + 𝑋 ) ∈ 𝑉 ) |
59 |
22 35 9 58
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 + 𝑋 ) ∈ 𝑉 ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ( 𝐸 + 𝑋 ) ∈ 𝑉 ) |
61 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LMod ) |
62 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
63 |
3 13 22 9 10
|
lspprid1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
65 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ 𝑉 ) |
66 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
67 |
3 4 21 61 62 64 65 66
|
lssvancl2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
68 |
3 21 13
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
69 |
22 35 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
71 |
3 13
|
lspsnid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
72 |
22 35 71
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
73 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
74 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
75 |
1 2 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
76 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LVec ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
78 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
79 |
74 77 78
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
80 |
21 13 22 24 63
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
81 |
80
|
sseld |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑁 ‘ { 𝑋 } ) → 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
82 |
81
|
con3dimp |
⊢ ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
84 |
3 12 13 76 65 79 83
|
lspsnnecom |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
85 |
3 4 21 61 70 73 74 84
|
lssvancl1 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
86 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐸 + 𝑋 ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
87 |
86
|
notbid |
⊢ ( 𝑧 = ( 𝐸 + 𝑋 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
88 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐸 + 𝑋 ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ↔ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
89 |
88
|
notbid |
⊢ ( 𝑧 = ( 𝐸 + 𝑋 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ↔ ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
90 |
87 89
|
anbi12d |
⊢ ( 𝑧 = ( 𝐸 + 𝑋 ) → ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ↔ ( ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) ) |
91 |
90
|
rspcev |
⊢ ( ( ( 𝐸 + 𝑋 ) ∈ 𝑉 ∧ ( ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ ( 𝐸 + 𝑋 ) ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
92 |
60 67 85 91
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∧ 𝑋 ≠ 0 ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
93 |
57 92
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ¬ 𝐸 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
94 |
31 93
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) |
95 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
96 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → 𝑋 ∈ 𝑉 ) |
97 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → 𝑌 ∈ 𝑉 ) |
98 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → 𝑧 ∈ 𝑉 ) |
99 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
100 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → 𝑈 ∈ LMod ) |
101 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → 𝐸 ∈ 𝑉 ) |
102 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) |
103 |
3 13 100 98 101 102
|
lspsnne2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
104 |
1 2 3 4 5 6 7 95 96 97 11 12 13 14 15 16 17 18 98 99 103
|
hdmap11lem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) ) → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) ) |
105 |
104
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝐸 } ) ) → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) ) ) |
106 |
94 105
|
mpd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) ) |