Metamath Proof Explorer


Theorem lssvancl2

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lssvancl.v 𝑉 = ( Base ‘ 𝑊 )
lssvancl.p + = ( +g𝑊 )
lssvancl.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssvancl.w ( 𝜑𝑊 ∈ LMod )
lssvancl.u ( 𝜑𝑈𝑆 )
lssvancl.x ( 𝜑𝑋𝑈 )
lssvancl.y ( 𝜑𝑌𝑉 )
lssvancl.n ( 𝜑 → ¬ 𝑌𝑈 )
Assertion lssvancl2 ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 lssvancl.v 𝑉 = ( Base ‘ 𝑊 )
2 lssvancl.p + = ( +g𝑊 )
3 lssvancl.s 𝑆 = ( LSubSp ‘ 𝑊 )
4 lssvancl.w ( 𝜑𝑊 ∈ LMod )
5 lssvancl.u ( 𝜑𝑈𝑆 )
6 lssvancl.x ( 𝜑𝑋𝑈 )
7 lssvancl.y ( 𝜑𝑌𝑉 )
8 lssvancl.n ( 𝜑 → ¬ 𝑌𝑈 )
9 1 3 lssel ( ( 𝑈𝑆𝑋𝑈 ) → 𝑋𝑉 )
10 5 6 9 syl2anc ( 𝜑𝑋𝑉 )
11 1 2 lmodcom ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
12 4 10 7 11 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
13 1 2 3 4 5 6 7 8 lssvancl1 ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 )
14 12 13 eqneltrrd ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) ∈ 𝑈 )