| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvancl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lssvancl.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lssvancl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
lssvancl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lssvancl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lssvancl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 7 |
|
lssvancl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lssvancl.n |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) |
| 9 |
1 3
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 |
1 2
|
lmodcom |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 12 |
4 10 7 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 13 |
1 2 3 4 5 6 7 8
|
lssvancl1 |
⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
| 14 |
12 13
|
eqneltrrd |
⊢ ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) ∈ 𝑈 ) |