| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvancl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lssvancl.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lssvancl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
lssvancl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lssvancl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lssvancl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 7 |
|
lssvancl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lssvancl.n |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) |
| 9 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 11 |
1 3
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 12 |
5 6 11
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 13 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 14 |
1 2 13
|
ablpncan2 |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 15 |
10 12 7 14
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 21 |
13 3
|
lssvsubcl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 22 |
17 18 19 20 21
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 23 |
16 22
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 24 |
8 23
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |