Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvancl.v | |- V = ( Base ` W ) |
|
| lssvancl.p | |- .+ = ( +g ` W ) |
||
| lssvancl.s | |- S = ( LSubSp ` W ) |
||
| lssvancl.w | |- ( ph -> W e. LMod ) |
||
| lssvancl.u | |- ( ph -> U e. S ) |
||
| lssvancl.x | |- ( ph -> X e. U ) |
||
| lssvancl.y | |- ( ph -> Y e. V ) |
||
| lssvancl.n | |- ( ph -> -. Y e. U ) |
||
| Assertion | lssvancl2 | |- ( ph -> -. ( Y .+ X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvancl.v | |- V = ( Base ` W ) |
|
| 2 | lssvancl.p | |- .+ = ( +g ` W ) |
|
| 3 | lssvancl.s | |- S = ( LSubSp ` W ) |
|
| 4 | lssvancl.w | |- ( ph -> W e. LMod ) |
|
| 5 | lssvancl.u | |- ( ph -> U e. S ) |
|
| 6 | lssvancl.x | |- ( ph -> X e. U ) |
|
| 7 | lssvancl.y | |- ( ph -> Y e. V ) |
|
| 8 | lssvancl.n | |- ( ph -> -. Y e. U ) |
|
| 9 | 1 3 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
| 10 | 5 6 9 | syl2anc | |- ( ph -> X e. V ) |
| 11 | 1 2 | lmodcom | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 12 | 4 10 7 11 | syl3anc | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
| 13 | 1 2 3 4 5 6 7 8 | lssvancl1 | |- ( ph -> -. ( X .+ Y ) e. U ) |
| 14 | 12 13 | eqneltrrd | |- ( ph -> -. ( Y .+ X ) e. U ) |