Metamath Proof Explorer


Theorem lssvancl2

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lssvancl.v V=BaseW
lssvancl.p +˙=+W
lssvancl.s S=LSubSpW
lssvancl.w φWLMod
lssvancl.u φUS
lssvancl.x φXU
lssvancl.y φYV
lssvancl.n φ¬YU
Assertion lssvancl2 φ¬Y+˙XU

Proof

Step Hyp Ref Expression
1 lssvancl.v V=BaseW
2 lssvancl.p +˙=+W
3 lssvancl.s S=LSubSpW
4 lssvancl.w φWLMod
5 lssvancl.u φUS
6 lssvancl.x φXU
7 lssvancl.y φYV
8 lssvancl.n φ¬YU
9 1 3 lssel USXUXV
10 5 6 9 syl2anc φXV
11 1 2 lmodcom WLModXVYVX+˙Y=Y+˙X
12 4 10 7 11 syl3anc φX+˙Y=Y+˙X
13 1 2 3 4 5 6 7 8 lssvancl1 φ¬X+˙YU
14 12 13 eqneltrrd φ¬Y+˙XU