| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapnzcl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapnzcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapnzcl.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapnzcl.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
hdmapnzcl.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmapnzcl.q |
|- Q = ( 0g ` C ) |
| 7 |
|
hdmapnzcl.d |
|- D = ( Base ` C ) |
| 8 |
|
hdmapnzcl.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 9 |
|
hdmapnzcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
hdmapnzcl.t |
|- ( ph -> T e. ( V \ { .0. } ) ) |
| 11 |
10
|
eldifad |
|- ( ph -> T e. V ) |
| 12 |
1 2 3 5 7 8 9 11
|
hdmapcl |
|- ( ph -> ( S ` T ) e. D ) |
| 13 |
|
eldifsni |
|- ( T e. ( V \ { .0. } ) -> T =/= .0. ) |
| 14 |
10 13
|
syl |
|- ( ph -> T =/= .0. ) |
| 15 |
1 2 3 4 5 6 8 9 11
|
hdmapeq0 |
|- ( ph -> ( ( S ` T ) = Q <-> T = .0. ) ) |
| 16 |
15
|
necon3bid |
|- ( ph -> ( ( S ` T ) =/= Q <-> T =/= .0. ) ) |
| 17 |
14 16
|
mpbird |
|- ( ph -> ( S ` T ) =/= Q ) |
| 18 |
|
eldifsn |
|- ( ( S ` T ) e. ( D \ { Q } ) <-> ( ( S ` T ) e. D /\ ( S ` T ) =/= Q ) ) |
| 19 |
12 17 18
|
sylanbrc |
|- ( ph -> ( S ` T ) e. ( D \ { Q } ) ) |