| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapnzcl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapnzcl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapnzcl.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapnzcl.o |  |-  .0. = ( 0g ` U ) | 
						
							| 5 |  | hdmapnzcl.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmapnzcl.q |  |-  Q = ( 0g ` C ) | 
						
							| 7 |  | hdmapnzcl.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | hdmapnzcl.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmapnzcl.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmapnzcl.t |  |-  ( ph -> T e. ( V \ { .0. } ) ) | 
						
							| 11 | 10 | eldifad |  |-  ( ph -> T e. V ) | 
						
							| 12 | 1 2 3 5 7 8 9 11 | hdmapcl |  |-  ( ph -> ( S ` T ) e. D ) | 
						
							| 13 |  | eldifsni |  |-  ( T e. ( V \ { .0. } ) -> T =/= .0. ) | 
						
							| 14 | 10 13 | syl |  |-  ( ph -> T =/= .0. ) | 
						
							| 15 | 1 2 3 4 5 6 8 9 11 | hdmapeq0 |  |-  ( ph -> ( ( S ` T ) = Q <-> T = .0. ) ) | 
						
							| 16 | 15 | necon3bid |  |-  ( ph -> ( ( S ` T ) =/= Q <-> T =/= .0. ) ) | 
						
							| 17 | 14 16 | mpbird |  |-  ( ph -> ( S ` T ) =/= Q ) | 
						
							| 18 |  | eldifsn |  |-  ( ( S ` T ) e. ( D \ { Q } ) <-> ( ( S ` T ) e. D /\ ( S ` T ) =/= Q ) ) | 
						
							| 19 | 12 17 18 | sylanbrc |  |-  ( ph -> ( S ` T ) e. ( D \ { Q } ) ) |