Metamath Proof Explorer


Theorem hdmapnzcl

Description: Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015)

Ref Expression
Hypotheses hdmapnzcl.h
|- H = ( LHyp ` K )
hdmapnzcl.u
|- U = ( ( DVecH ` K ) ` W )
hdmapnzcl.v
|- V = ( Base ` U )
hdmapnzcl.o
|- .0. = ( 0g ` U )
hdmapnzcl.c
|- C = ( ( LCDual ` K ) ` W )
hdmapnzcl.q
|- Q = ( 0g ` C )
hdmapnzcl.d
|- D = ( Base ` C )
hdmapnzcl.s
|- S = ( ( HDMap ` K ) ` W )
hdmapnzcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapnzcl.t
|- ( ph -> T e. ( V \ { .0. } ) )
Assertion hdmapnzcl
|- ( ph -> ( S ` T ) e. ( D \ { Q } ) )

Proof

Step Hyp Ref Expression
1 hdmapnzcl.h
 |-  H = ( LHyp ` K )
2 hdmapnzcl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapnzcl.v
 |-  V = ( Base ` U )
4 hdmapnzcl.o
 |-  .0. = ( 0g ` U )
5 hdmapnzcl.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmapnzcl.q
 |-  Q = ( 0g ` C )
7 hdmapnzcl.d
 |-  D = ( Base ` C )
8 hdmapnzcl.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmapnzcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmapnzcl.t
 |-  ( ph -> T e. ( V \ { .0. } ) )
11 10 eldifad
 |-  ( ph -> T e. V )
12 1 2 3 5 7 8 9 11 hdmapcl
 |-  ( ph -> ( S ` T ) e. D )
13 eldifsni
 |-  ( T e. ( V \ { .0. } ) -> T =/= .0. )
14 10 13 syl
 |-  ( ph -> T =/= .0. )
15 1 2 3 4 5 6 8 9 11 hdmapeq0
 |-  ( ph -> ( ( S ` T ) = Q <-> T = .0. ) )
16 15 necon3bid
 |-  ( ph -> ( ( S ` T ) =/= Q <-> T =/= .0. ) )
17 14 16 mpbird
 |-  ( ph -> ( S ` T ) =/= Q )
18 eldifsn
 |-  ( ( S ` T ) e. ( D \ { Q } ) <-> ( ( S ` T ) e. D /\ ( S ` T ) =/= Q ) )
19 12 17 18 sylanbrc
 |-  ( ph -> ( S ` T ) e. ( D \ { Q } ) )