Metamath Proof Explorer


Theorem hdmapnzcl

Description: Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015)

Ref Expression
Hypotheses hdmapnzcl.h H = LHyp K
hdmapnzcl.u U = DVecH K W
hdmapnzcl.v V = Base U
hdmapnzcl.o 0 ˙ = 0 U
hdmapnzcl.c C = LCDual K W
hdmapnzcl.q Q = 0 C
hdmapnzcl.d D = Base C
hdmapnzcl.s S = HDMap K W
hdmapnzcl.k φ K HL W H
hdmapnzcl.t φ T V 0 ˙
Assertion hdmapnzcl φ S T D Q

Proof

Step Hyp Ref Expression
1 hdmapnzcl.h H = LHyp K
2 hdmapnzcl.u U = DVecH K W
3 hdmapnzcl.v V = Base U
4 hdmapnzcl.o 0 ˙ = 0 U
5 hdmapnzcl.c C = LCDual K W
6 hdmapnzcl.q Q = 0 C
7 hdmapnzcl.d D = Base C
8 hdmapnzcl.s S = HDMap K W
9 hdmapnzcl.k φ K HL W H
10 hdmapnzcl.t φ T V 0 ˙
11 10 eldifad φ T V
12 1 2 3 5 7 8 9 11 hdmapcl φ S T D
13 eldifsni T V 0 ˙ T 0 ˙
14 10 13 syl φ T 0 ˙
15 1 2 3 4 5 6 8 9 11 hdmapeq0 φ S T = Q T = 0 ˙
16 15 necon3bid φ S T Q T 0 ˙
17 14 16 mpbird φ S T Q
18 eldifsn S T D Q S T D S T Q
19 12 17 18 sylanbrc φ S T D Q