Metamath Proof Explorer


Theorem hdmapnzcl

Description: Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015)

Ref Expression
Hypotheses hdmapnzcl.h H=LHypK
hdmapnzcl.u U=DVecHKW
hdmapnzcl.v V=BaseU
hdmapnzcl.o 0˙=0U
hdmapnzcl.c C=LCDualKW
hdmapnzcl.q Q=0C
hdmapnzcl.d D=BaseC
hdmapnzcl.s S=HDMapKW
hdmapnzcl.k φKHLWH
hdmapnzcl.t φTV0˙
Assertion hdmapnzcl φSTDQ

Proof

Step Hyp Ref Expression
1 hdmapnzcl.h H=LHypK
2 hdmapnzcl.u U=DVecHKW
3 hdmapnzcl.v V=BaseU
4 hdmapnzcl.o 0˙=0U
5 hdmapnzcl.c C=LCDualKW
6 hdmapnzcl.q Q=0C
7 hdmapnzcl.d D=BaseC
8 hdmapnzcl.s S=HDMapKW
9 hdmapnzcl.k φKHLWH
10 hdmapnzcl.t φTV0˙
11 10 eldifad φTV
12 1 2 3 5 7 8 9 11 hdmapcl φSTD
13 eldifsni TV0˙T0˙
14 10 13 syl φT0˙
15 1 2 3 4 5 6 8 9 11 hdmapeq0 φST=QT=0˙
16 15 necon3bid φSTQT0˙
17 14 16 mpbird φSTQ
18 eldifsn STDQSTDSTQ
19 12 17 18 sylanbrc φSTDQ