Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapcl.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapcl.v |
|- V = ( Base ` U ) |
4 |
|
hdmapcl.c |
|- C = ( ( LCDual ` K ) ` W ) |
5 |
|
hdmapcl.d |
|- D = ( Base ` C ) |
6 |
|
hdmapcl.s |
|- S = ( ( HDMap ` K ) ` W ) |
7 |
|
hdmapcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
hdmapcl.t |
|- ( ph -> T e. V ) |
9 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
10 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
11 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
12 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
13 |
1 9 2 3 10 4 5 11 12 6 7 8
|
hdmapval |
|- ( ph -> ( S ` T ) = ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
16 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
17 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
18 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
19 |
1 17 18 2 3 14 9 7
|
dvheveccl |
|- ( ph -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( V \ { ( 0g ` U ) } ) ) |
20 |
1 2 3 14 10 4 15 16 11 7 19
|
mapdhvmap |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) = ( ( LSpan ` C ) ` { ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) } ) ) |
21 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
22 |
1 2 3 14 4 5 21 11 7 19
|
hvmapcl2 |
|- ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. ( D \ { ( 0g ` C ) } ) ) |
23 |
22
|
eldifad |
|- ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. D ) |
24 |
1 2 3 14 10 4 5 15 16 12 7 20 19 23 8
|
hdmap1eu |
|- ( ph -> E! h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) |
25 |
|
riotacl |
|- ( E! h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) -> ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) e. D ) |
26 |
24 25
|
syl |
|- ( ph -> ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) e. D ) |
27 |
13 26
|
eqeltrd |
|- ( ph -> ( S ` T ) e. D ) |