| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapcl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapcl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapcl.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapcl.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 5 |  | hdmapcl.d |  |-  D = ( Base ` C ) | 
						
							| 6 |  | hdmapcl.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 7 |  | hdmapcl.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | hdmapcl.t |  |-  ( ph -> T e. V ) | 
						
							| 9 |  | eqid |  |-  <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 10 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 11 |  | eqid |  |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) | 
						
							| 12 |  | eqid |  |-  ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) | 
						
							| 13 | 1 9 2 3 10 4 5 11 12 6 7 8 | hdmapval |  |-  ( ph -> ( S ` T ) = ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 15 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 16 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 18 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 19 | 1 17 18 2 3 14 9 7 | dvheveccl |  |-  ( ph -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 20 | 1 2 3 14 10 4 15 16 11 7 19 | mapdhvmap |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) = ( ( LSpan ` C ) ` { ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) } ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 22 | 1 2 3 14 4 5 21 11 7 19 | hvmapcl2 |  |-  ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. ( D \ { ( 0g ` C ) } ) ) | 
						
							| 23 | 22 | eldifad |  |-  ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. D ) | 
						
							| 24 | 1 2 3 14 10 4 5 15 16 12 7 20 19 23 8 | hdmap1eu |  |-  ( ph -> E! h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) | 
						
							| 25 |  | riotacl |  |-  ( E! h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) -> ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) e. D ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( iota_ h e. D A. y e. V ( -. y e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { T } ) ) -> h = ( ( ( HDMap1 ` K ) ` W ) ` <. y , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , y >. ) , T >. ) ) ) e. D ) | 
						
							| 27 | 13 26 | eqeltrd |  |-  ( ph -> ( S ` T ) e. D ) |