| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapval2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapval2.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapval2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hdmapval2.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hdmapval2.n |  |-  N = ( LSpan ` U ) | 
						
							| 6 |  | hdmapval2.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | hdmapval2.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | hdmapval2.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 9 |  | hdmapval2.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 10 |  | hdmapval2.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapval2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmapval2.t |  |-  ( ph -> T e. V ) | 
						
							| 13 |  | hdmapval2.f |  |-  ( ph -> F e. D ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | hdmapval |  |-  ( ph -> ( S ` T ) = ( iota_ h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( ph -> ( ( S ` T ) = F <-> ( iota_ h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) = F ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 17 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 18 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 19 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 20 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 21 | 1 19 20 3 4 16 2 11 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 22 | 1 3 4 16 5 6 17 18 8 11 21 | mapdhvmap |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 24 | 1 3 4 16 6 7 23 8 11 21 | hvmapcl2 |  |-  ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) | 
						
							| 25 | 24 | eldifad |  |-  ( ph -> ( J ` E ) e. D ) | 
						
							| 26 | 1 3 4 16 5 6 7 17 18 9 11 22 21 25 12 | hdmap1eu |  |-  ( ph -> E! h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) | 
						
							| 27 |  | nfv |  |-  F/ h ph | 
						
							| 28 |  | nfcvd |  |-  ( ph -> F/_ h F ) | 
						
							| 29 |  | nfvd |  |-  ( ph -> F/ h A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) | 
						
							| 30 |  | eqeq1 |  |-  ( h = F -> ( h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) <-> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) | 
						
							| 31 | 30 | imbi2d |  |-  ( h = F -> ( ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) | 
						
							| 32 | 31 | ralbidv |  |-  ( h = F -> ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ h = F ) -> ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) | 
						
							| 34 | 27 28 29 13 33 | riota2df |  |-  ( ( ph /\ E! h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) -> ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> ( iota_ h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) = F ) ) | 
						
							| 35 | 26 34 | mpdan |  |-  ( ph -> ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> ( iota_ h e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> h = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) = F ) ) | 
						
							| 36 | 15 35 | bitr4d |  |-  ( ph -> ( ( S ` T ) = F <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> F = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) |