Metamath Proof Explorer


Theorem hdmapval

Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in Baer p. 48. We select a convenient fixed reference vector E to be <. 0 , 1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom P = ( ( ocK )W ) (see dvheveccl ). ( JE ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our z that the A. z e. V ranges over. The middle term ( I<. E , ( JE ) , z >. ) provides isolation to allow E and T to assume the same value without conflict. Closure is shown by hdmapcl . If a separate auxiliary vector is known, hdmapval2 provides a version without quantification. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval.h
|- H = ( LHyp ` K )
hdmapfval.e
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
hdmapfval.u
|- U = ( ( DVecH ` K ) ` W )
hdmapfval.v
|- V = ( Base ` U )
hdmapfval.n
|- N = ( LSpan ` U )
hdmapfval.c
|- C = ( ( LCDual ` K ) ` W )
hdmapfval.d
|- D = ( Base ` C )
hdmapfval.j
|- J = ( ( HVMap ` K ) ` W )
hdmapfval.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmapfval.s
|- S = ( ( HDMap ` K ) ` W )
hdmapfval.k
|- ( ph -> ( K e. A /\ W e. H ) )
hdmapval.t
|- ( ph -> T e. V )
Assertion hdmapval
|- ( ph -> ( S ` T ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmapval.h
 |-  H = ( LHyp ` K )
2 hdmapfval.e
 |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
3 hdmapfval.u
 |-  U = ( ( DVecH ` K ) ` W )
4 hdmapfval.v
 |-  V = ( Base ` U )
5 hdmapfval.n
 |-  N = ( LSpan ` U )
6 hdmapfval.c
 |-  C = ( ( LCDual ` K ) ` W )
7 hdmapfval.d
 |-  D = ( Base ` C )
8 hdmapfval.j
 |-  J = ( ( HVMap ` K ) ` W )
9 hdmapfval.i
 |-  I = ( ( HDMap1 ` K ) ` W )
10 hdmapfval.s
 |-  S = ( ( HDMap ` K ) ` W )
11 hdmapfval.k
 |-  ( ph -> ( K e. A /\ W e. H ) )
12 hdmapval.t
 |-  ( ph -> T e. V )
13 1 2 3 4 5 6 7 8 9 10 11 hdmapfval
 |-  ( ph -> S = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) )
14 13 fveq1d
 |-  ( ph -> ( S ` T ) = ( ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ` T ) )
15 riotaex
 |-  ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) e. _V
16 sneq
 |-  ( t = T -> { t } = { T } )
17 16 fveq2d
 |-  ( t = T -> ( N ` { t } ) = ( N ` { T } ) )
18 17 uneq2d
 |-  ( t = T -> ( ( N ` { E } ) u. ( N ` { t } ) ) = ( ( N ` { E } ) u. ( N ` { T } ) ) )
19 18 eleq2d
 |-  ( t = T -> ( z e. ( ( N ` { E } ) u. ( N ` { t } ) ) <-> z e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) )
20 19 notbid
 |-  ( t = T -> ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) <-> -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) )
21 oteq3
 |-  ( t = T -> <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. = <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. )
22 21 fveq2d
 |-  ( t = T -> ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) )
23 22 eqeq2d
 |-  ( t = T -> ( y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) <-> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) )
24 20 23 imbi12d
 |-  ( t = T -> ( ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) <-> ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )
25 24 ralbidv
 |-  ( t = T -> ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )
26 25 riotabidv
 |-  ( t = T -> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )
27 eqid
 |-  ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) )
28 26 27 fvmptg
 |-  ( ( T e. V /\ ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) e. _V ) -> ( ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ` T ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )
29 12 15 28 sylancl
 |-  ( ph -> ( ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ` T ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )
30 14 29 eqtrd
 |-  ( ph -> ( S ` T ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) )