Metamath Proof Explorer


Theorem hdmapval

Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in Baer p. 48. We select a convenient fixed reference vector E to be <. 0 , 1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom P = ( ( ocK )W ) (see dvheveccl ). ( JE ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our z that the A. z e. V ranges over. The middle term ( I<. E , ( JE ) , z >. ) provides isolation to allow E and T to assume the same value without conflict. Closure is shown by hdmapcl . If a separate auxiliary vector is known, hdmapval2 provides a version without quantification. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval.h H = LHyp K
hdmapfval.e E = I Base K I LTrn K W
hdmapfval.u U = DVecH K W
hdmapfval.v V = Base U
hdmapfval.n N = LSpan U
hdmapfval.c C = LCDual K W
hdmapfval.d D = Base C
hdmapfval.j J = HVMap K W
hdmapfval.i I = HDMap1 K W
hdmapfval.s S = HDMap K W
hdmapfval.k φ K A W H
hdmapval.t φ T V
Assertion hdmapval φ S T = ι y D | z V ¬ z N E N T y = I z I E J E z T

Proof

Step Hyp Ref Expression
1 hdmapval.h H = LHyp K
2 hdmapfval.e E = I Base K I LTrn K W
3 hdmapfval.u U = DVecH K W
4 hdmapfval.v V = Base U
5 hdmapfval.n N = LSpan U
6 hdmapfval.c C = LCDual K W
7 hdmapfval.d D = Base C
8 hdmapfval.j J = HVMap K W
9 hdmapfval.i I = HDMap1 K W
10 hdmapfval.s S = HDMap K W
11 hdmapfval.k φ K A W H
12 hdmapval.t φ T V
13 1 2 3 4 5 6 7 8 9 10 11 hdmapfval φ S = t V ι y D | z V ¬ z N E N t y = I z I E J E z t
14 13 fveq1d φ S T = t V ι y D | z V ¬ z N E N t y = I z I E J E z t T
15 riotaex ι y D | z V ¬ z N E N T y = I z I E J E z T V
16 sneq t = T t = T
17 16 fveq2d t = T N t = N T
18 17 uneq2d t = T N E N t = N E N T
19 18 eleq2d t = T z N E N t z N E N T
20 19 notbid t = T ¬ z N E N t ¬ z N E N T
21 oteq3 t = T z I E J E z t = z I E J E z T
22 21 fveq2d t = T I z I E J E z t = I z I E J E z T
23 22 eqeq2d t = T y = I z I E J E z t y = I z I E J E z T
24 20 23 imbi12d t = T ¬ z N E N t y = I z I E J E z t ¬ z N E N T y = I z I E J E z T
25 24 ralbidv t = T z V ¬ z N E N t y = I z I E J E z t z V ¬ z N E N T y = I z I E J E z T
26 25 riotabidv t = T ι y D | z V ¬ z N E N t y = I z I E J E z t = ι y D | z V ¬ z N E N T y = I z I E J E z T
27 eqid t V ι y D | z V ¬ z N E N t y = I z I E J E z t = t V ι y D | z V ¬ z N E N t y = I z I E J E z t
28 26 27 fvmptg T V ι y D | z V ¬ z N E N T y = I z I E J E z T V t V ι y D | z V ¬ z N E N t y = I z I E J E z t T = ι y D | z V ¬ z N E N T y = I z I E J E z T
29 12 15 28 sylancl φ t V ι y D | z V ¬ z N E N t y = I z I E J E z t T = ι y D | z V ¬ z N E N T y = I z I E J E z T
30 14 29 eqtrd φ S T = ι y D | z V ¬ z N E N T y = I z I E J E z T