Metamath Proof Explorer


Theorem hdmapfnN

Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapfn.h H=LHypK
hdmapfn.u U=DVecHKW
hdmapfn.v V=BaseU
hdmapfn.s S=HDMapKW
hdmapfn.k φKHLWH
Assertion hdmapfnN φSFnV

Proof

Step Hyp Ref Expression
1 hdmapfn.h H=LHypK
2 hdmapfn.u U=DVecHKW
3 hdmapfn.v V=BaseU
4 hdmapfn.s S=HDMapKW
5 hdmapfn.k φKHLWH
6 riotaex ιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWztV
7 eqid tVιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWzt=tVιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWzt
8 6 7 fnmpti tVιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWztFnV
9 eqid IBaseKILTrnKW=IBaseKILTrnKW
10 eqid LSpanU=LSpanU
11 eqid LCDualKW=LCDualKW
12 eqid BaseLCDualKW=BaseLCDualKW
13 eqid HVMapKW=HVMapKW
14 eqid HDMap1KW=HDMap1KW
15 1 9 2 3 10 11 12 13 14 4 5 hdmapfval φS=tVιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWzt
16 15 fneq1d φSFnVtVιyBaseLCDualKW|zV¬zLSpanUIBaseKILTrnKWLSpanUty=HDMap1KWzHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWztFnV
17 8 16 mpbiri φSFnV