Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapfn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapfn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapfn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapfn.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapfn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
8 |
6 7
|
fnmpti |
⊢ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) Fn 𝑉 |
9 |
|
eqid |
⊢ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
10 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
1 9 2 3 10 11 12 13 14 4 5
|
hdmapfval |
⊢ ( 𝜑 → 𝑆 = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
16 |
15
|
fneq1d |
⊢ ( 𝜑 → ( 𝑆 Fn 𝑉 ↔ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∪ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑡 } ) ) → 𝑦 = ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑧 , ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) Fn 𝑉 ) ) |
17 |
8 16
|
mpbiri |
⊢ ( 𝜑 → 𝑆 Fn 𝑉 ) |