| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapfn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapfn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapfn.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmapfn.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 5 |
|
hdmapfn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
riotaex |
|- ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) e. _V |
| 7 |
|
eqid |
|- ( t e. V |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) ) = ( t e. V |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) ) |
| 8 |
6 7
|
fnmpti |
|- ( t e. V |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) ) Fn V |
| 9 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 10 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 11 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 12 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 13 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
| 14 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
| 15 |
1 9 2 3 10 11 12 13 14 4 5
|
hdmapfval |
|- ( ph -> S = ( t e. V |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) ) ) |
| 16 |
15
|
fneq1d |
|- ( ph -> ( S Fn V <-> ( t e. V |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. V ( -. z e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { t } ) ) -> y = ( ( ( HDMap1 ` K ) ` W ) ` <. z , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , z >. ) , t >. ) ) ) ) Fn V ) ) |
| 17 |
8 16
|
mpbiri |
|- ( ph -> S Fn V ) |