| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapval.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapfval.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 3 |
|
hdmapfval.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
hdmapfval.v |
|- V = ( Base ` U ) |
| 5 |
|
hdmapfval.n |
|- N = ( LSpan ` U ) |
| 6 |
|
hdmapfval.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
hdmapfval.d |
|- D = ( Base ` C ) |
| 8 |
|
hdmapfval.j |
|- J = ( ( HVMap ` K ) ` W ) |
| 9 |
|
hdmapfval.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
| 10 |
|
hdmapfval.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 11 |
|
hdmapfval.k |
|- ( ph -> ( K e. A /\ W e. H ) ) |
| 12 |
1
|
hdmapffval |
|- ( K e. A -> ( HDMap ` K ) = ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ) |
| 13 |
12
|
fveq1d |
|- ( K e. A -> ( ( HDMap ` K ) ` W ) = ( ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ` W ) ) |
| 14 |
10 13
|
eqtrid |
|- ( K e. A -> S = ( ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ` W ) ) |
| 15 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
| 16 |
15
|
reseq2d |
|- ( w = W -> ( _I |` ( ( LTrn ` K ) ` w ) ) = ( _I |` ( ( LTrn ` K ) ` W ) ) ) |
| 17 |
16
|
opeq2d |
|- ( w = W -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) |
| 18 |
|
fveq2 |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
| 19 |
|
fveq2 |
|- ( w = W -> ( ( HDMap1 ` K ) ` w ) = ( ( HDMap1 ` K ) ` W ) ) |
| 20 |
|
2fveq3 |
|- ( w = W -> ( Base ` ( ( LCDual ` K ) ` w ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 21 |
|
fveq2 |
|- ( w = W -> ( ( HVMap ` K ) ` w ) = ( ( HVMap ` K ) ` W ) ) |
| 22 |
21
|
fveq1d |
|- ( w = W -> ( ( ( HVMap ` K ) ` w ) ` e ) = ( ( ( HVMap ` K ) ` W ) ` e ) ) |
| 23 |
22
|
oteq2d |
|- ( w = W -> <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. = <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) |
| 24 |
23
|
fveq2d |
|- ( w = W -> ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) = ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) ) |
| 25 |
24
|
oteq2d |
|- ( w = W -> <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. = <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) |
| 26 |
25
|
fveq2d |
|- ( w = W -> ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) |
| 27 |
26
|
eqeq2d |
|- ( w = W -> ( y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) <-> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) |
| 28 |
27
|
imbi2d |
|- ( w = W -> ( ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) <-> ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 29 |
28
|
ralbidv |
|- ( w = W -> ( A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) <-> A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 30 |
20 29
|
riotaeqbidv |
|- ( w = W -> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) = ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 31 |
30
|
mpteq2dv |
|- ( w = W -> ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) = ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) |
| 32 |
31
|
eleq2d |
|- ( w = W -> ( a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 33 |
19 32
|
sbceqbid |
|- ( w = W -> ( [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 34 |
33
|
sbcbidv |
|- ( w = W -> ( [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 35 |
18 34
|
sbceqbid |
|- ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> [. ( ( DVecH ` K ) ` W ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 36 |
17 35
|
sbceqbid |
|- ( w = W -> ( [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. / e ]. [. ( ( DVecH ` K ) ` W ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 37 |
|
opex |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. _V |
| 38 |
|
fvex |
|- ( ( DVecH ` K ) ` W ) e. _V |
| 39 |
|
fvex |
|- ( Base ` u ) e. _V |
| 40 |
|
simp1 |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) |
| 41 |
40 2
|
eqtr4di |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> e = E ) |
| 42 |
|
simp2 |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> u = ( ( DVecH ` K ) ` W ) ) |
| 43 |
42 3
|
eqtr4di |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> u = U ) |
| 44 |
|
simp3 |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> v = ( Base ` u ) ) |
| 45 |
43
|
fveq2d |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> ( Base ` u ) = ( Base ` U ) ) |
| 46 |
44 45
|
eqtrd |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> v = ( Base ` U ) ) |
| 47 |
46 4
|
eqtr4di |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> v = V ) |
| 48 |
|
fvex |
|- ( ( HDMap1 ` K ) ` W ) e. _V |
| 49 |
|
id |
|- ( i = ( ( HDMap1 ` K ) ` W ) -> i = ( ( HDMap1 ` K ) ` W ) ) |
| 50 |
49 9
|
eqtr4di |
|- ( i = ( ( HDMap1 ` K ) ` W ) -> i = I ) |
| 51 |
|
fveq1 |
|- ( i = I -> ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) = ( I ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) |
| 52 |
|
fveq1 |
|- ( i = I -> ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) = ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) ) |
| 53 |
52
|
oteq2d |
|- ( i = I -> <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. = <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) |
| 54 |
53
|
fveq2d |
|- ( i = I -> ( I ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) |
| 55 |
51 54
|
eqtrd |
|- ( i = I -> ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) |
| 56 |
55
|
eqeq2d |
|- ( i = I -> ( y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) <-> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) |
| 57 |
56
|
imbi2d |
|- ( i = I -> ( ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) <-> ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 58 |
57
|
ralbidv |
|- ( i = I -> ( A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) <-> A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 59 |
58
|
riotabidv |
|- ( i = I -> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) = ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) |
| 60 |
59
|
mpteq2dv |
|- ( i = I -> ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) = ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) |
| 61 |
60
|
eleq2d |
|- ( i = I -> ( a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 62 |
50 61
|
syl |
|- ( i = ( ( HDMap1 ` K ) ` W ) -> ( a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) ) |
| 63 |
48 62
|
sbcie |
|- ( [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) ) |
| 64 |
|
simp3 |
|- ( ( e = E /\ u = U /\ v = V ) -> v = V ) |
| 65 |
6
|
fveq2i |
|- ( Base ` C ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 66 |
7 65
|
eqtr2i |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = D |
| 67 |
66
|
a1i |
|- ( ( e = E /\ u = U /\ v = V ) -> ( Base ` ( ( LCDual ` K ) ` W ) ) = D ) |
| 68 |
|
simp2 |
|- ( ( e = E /\ u = U /\ v = V ) -> u = U ) |
| 69 |
68
|
fveq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( LSpan ` u ) = ( LSpan ` U ) ) |
| 70 |
69 5
|
eqtr4di |
|- ( ( e = E /\ u = U /\ v = V ) -> ( LSpan ` u ) = N ) |
| 71 |
|
simp1 |
|- ( ( e = E /\ u = U /\ v = V ) -> e = E ) |
| 72 |
71
|
sneqd |
|- ( ( e = E /\ u = U /\ v = V ) -> { e } = { E } ) |
| 73 |
70 72
|
fveq12d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( LSpan ` u ) ` { e } ) = ( N ` { E } ) ) |
| 74 |
70
|
fveq1d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( LSpan ` u ) ` { t } ) = ( N ` { t } ) ) |
| 75 |
73 74
|
uneq12d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) = ( ( N ` { E } ) u. ( N ` { t } ) ) ) |
| 76 |
75
|
eleq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) <-> z e. ( ( N ` { E } ) u. ( N ` { t } ) ) ) ) |
| 77 |
76
|
notbid |
|- ( ( e = E /\ u = U /\ v = V ) -> ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) <-> -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) ) ) |
| 78 |
71
|
oteq1d |
|- ( ( e = E /\ u = U /\ v = V ) -> <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. = <. E , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) |
| 79 |
71
|
fveq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( ( HVMap ` K ) ` W ) ` e ) = ( ( ( HVMap ` K ) ` W ) ` E ) ) |
| 80 |
8
|
fveq1i |
|- ( J ` E ) = ( ( ( HVMap ` K ) ` W ) ` E ) |
| 81 |
79 80
|
eqtr4di |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( ( HVMap ` K ) ` W ) ` e ) = ( J ` E ) ) |
| 82 |
81
|
oteq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> <. E , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. = <. E , ( J ` E ) , z >. ) |
| 83 |
78 82
|
eqtrd |
|- ( ( e = E /\ u = U /\ v = V ) -> <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. = <. E , ( J ` E ) , z >. ) |
| 84 |
83
|
fveq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) = ( I ` <. E , ( J ` E ) , z >. ) ) |
| 85 |
84
|
oteq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. = <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) |
| 86 |
85
|
fveq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) |
| 87 |
86
|
eqeq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) <-> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) |
| 88 |
77 87
|
imbi12d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) <-> ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) |
| 89 |
64 88
|
raleqbidv |
|- ( ( e = E /\ u = U /\ v = V ) -> ( A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) |
| 90 |
67 89
|
riotaeqbidv |
|- ( ( e = E /\ u = U /\ v = V ) -> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) = ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) |
| 91 |
64 90
|
mpteq12dv |
|- ( ( e = E /\ u = U /\ v = V ) -> ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |
| 92 |
91
|
eleq2d |
|- ( ( e = E /\ u = U /\ v = V ) -> ( a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( I ` <. z , ( I ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) ) |
| 93 |
63 92
|
bitrid |
|- ( ( e = E /\ u = U /\ v = V ) -> ( [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) ) |
| 94 |
41 43 47 93
|
syl3anc |
|- ( ( e = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. /\ u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) ) -> ( [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) ) |
| 95 |
37 38 39 94
|
sbc3ie |
|- ( [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. / e ]. [. ( ( DVecH ` K ) ` W ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` W ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` W ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` W ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |
| 96 |
36 95
|
bitrdi |
|- ( w = W -> ( [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) <-> a e. ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) ) |
| 97 |
96
|
eqabcdv |
|- ( w = W -> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |
| 98 |
|
eqid |
|- ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) = ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) |
| 99 |
97 98 4
|
mptfvmpt |
|- ( W e. H -> ( ( w e. H |-> { a | [. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` w ) ) >. / e ]. [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` K ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` K ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` K ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ` W ) = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |
| 100 |
14 99
|
sylan9eq |
|- ( ( K e. A /\ W e. H ) -> S = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |
| 101 |
11 100
|
syl |
|- ( ph -> S = ( t e. V |-> ( iota_ y e. D A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { t } ) ) -> y = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , t >. ) ) ) ) ) |