| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap12b.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap12b.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap12b.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap12b.m |  |-  M = ( invg ` U ) | 
						
							| 5 |  | hdmap12b.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmap12b.i |  |-  I = ( invg ` C ) | 
						
							| 7 |  | hdmap12b.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmap12b.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmap12b.x |  |-  ( ph -> T e. V ) | 
						
							| 10 | 1 5 8 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 12 | 1 2 3 5 11 7 8 9 | hdmapcl |  |-  ( ph -> ( S ` T ) e. ( Base ` C ) ) | 
						
							| 13 |  | eqid |  |-  ( +g ` C ) = ( +g ` C ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 15 | 11 13 14 6 | lmodvnegid |  |-  ( ( C e. LMod /\ ( S ` T ) e. ( Base ` C ) ) -> ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) = ( 0g ` C ) ) | 
						
							| 16 | 10 12 15 | syl2anc |  |-  ( ph -> ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) = ( 0g ` C ) ) | 
						
							| 17 | 1 2 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 18 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 20 | 3 18 19 4 | lmodvnegid |  |-  ( ( U e. LMod /\ T e. V ) -> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) | 
						
							| 21 | 17 9 20 | syl2anc |  |-  ( ph -> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) | 
						
							| 22 | 3 4 | lmodvnegcl |  |-  ( ( U e. LMod /\ T e. V ) -> ( M ` T ) e. V ) | 
						
							| 23 | 17 9 22 | syl2anc |  |-  ( ph -> ( M ` T ) e. V ) | 
						
							| 24 | 3 18 | lmodvacl |  |-  ( ( U e. LMod /\ T e. V /\ ( M ` T ) e. V ) -> ( T ( +g ` U ) ( M ` T ) ) e. V ) | 
						
							| 25 | 17 9 23 24 | syl3anc |  |-  ( ph -> ( T ( +g ` U ) ( M ` T ) ) e. V ) | 
						
							| 26 | 1 2 3 19 5 14 7 8 25 | hdmapeq0 |  |-  ( ph -> ( ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( 0g ` C ) <-> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) ) | 
						
							| 27 | 21 26 | mpbird |  |-  ( ph -> ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( 0g ` C ) ) | 
						
							| 28 | 1 2 3 18 5 13 7 8 9 23 | hdmapadd |  |-  ( ph -> ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) ) | 
						
							| 29 | 16 27 28 | 3eqtr2rd |  |-  ( ph -> ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) ) | 
						
							| 30 | 1 2 3 5 11 7 8 23 | hdmapcl |  |-  ( ph -> ( S ` ( M ` T ) ) e. ( Base ` C ) ) | 
						
							| 31 | 11 6 | lmodvnegcl |  |-  ( ( C e. LMod /\ ( S ` T ) e. ( Base ` C ) ) -> ( I ` ( S ` T ) ) e. ( Base ` C ) ) | 
						
							| 32 | 10 12 31 | syl2anc |  |-  ( ph -> ( I ` ( S ` T ) ) e. ( Base ` C ) ) | 
						
							| 33 | 11 13 | lmodlcan |  |-  ( ( C e. LMod /\ ( ( S ` ( M ` T ) ) e. ( Base ` C ) /\ ( I ` ( S ` T ) ) e. ( Base ` C ) /\ ( S ` T ) e. ( Base ` C ) ) ) -> ( ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) <-> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) ) | 
						
							| 34 | 10 30 32 12 33 | syl13anc |  |-  ( ph -> ( ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) <-> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) ) | 
						
							| 35 | 29 34 | mpbid |  |-  ( ph -> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) |