Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap12b.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap12b.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap12b.v |
|- V = ( Base ` U ) |
4 |
|
hdmap12b.m |
|- M = ( invg ` U ) |
5 |
|
hdmap12b.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmap12b.i |
|- I = ( invg ` C ) |
7 |
|
hdmap12b.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmap12b.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmap12b.x |
|- ( ph -> T e. V ) |
10 |
1 5 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
12 |
1 2 3 5 11 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` T ) e. ( Base ` C ) ) |
13 |
|
eqid |
|- ( +g ` C ) = ( +g ` C ) |
14 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
15 |
11 13 14 6
|
lmodvnegid |
|- ( ( C e. LMod /\ ( S ` T ) e. ( Base ` C ) ) -> ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) = ( 0g ` C ) ) |
16 |
10 12 15
|
syl2anc |
|- ( ph -> ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) = ( 0g ` C ) ) |
17 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
19 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
20 |
3 18 19 4
|
lmodvnegid |
|- ( ( U e. LMod /\ T e. V ) -> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) |
21 |
17 9 20
|
syl2anc |
|- ( ph -> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) |
22 |
3 4
|
lmodvnegcl |
|- ( ( U e. LMod /\ T e. V ) -> ( M ` T ) e. V ) |
23 |
17 9 22
|
syl2anc |
|- ( ph -> ( M ` T ) e. V ) |
24 |
3 18
|
lmodvacl |
|- ( ( U e. LMod /\ T e. V /\ ( M ` T ) e. V ) -> ( T ( +g ` U ) ( M ` T ) ) e. V ) |
25 |
17 9 23 24
|
syl3anc |
|- ( ph -> ( T ( +g ` U ) ( M ` T ) ) e. V ) |
26 |
1 2 3 19 5 14 7 8 25
|
hdmapeq0 |
|- ( ph -> ( ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( 0g ` C ) <-> ( T ( +g ` U ) ( M ` T ) ) = ( 0g ` U ) ) ) |
27 |
21 26
|
mpbird |
|- ( ph -> ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( 0g ` C ) ) |
28 |
1 2 3 18 5 13 7 8 9 23
|
hdmapadd |
|- ( ph -> ( S ` ( T ( +g ` U ) ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) ) |
29 |
16 27 28
|
3eqtr2rd |
|- ( ph -> ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) ) |
30 |
1 2 3 5 11 7 8 23
|
hdmapcl |
|- ( ph -> ( S ` ( M ` T ) ) e. ( Base ` C ) ) |
31 |
11 6
|
lmodvnegcl |
|- ( ( C e. LMod /\ ( S ` T ) e. ( Base ` C ) ) -> ( I ` ( S ` T ) ) e. ( Base ` C ) ) |
32 |
10 12 31
|
syl2anc |
|- ( ph -> ( I ` ( S ` T ) ) e. ( Base ` C ) ) |
33 |
11 13
|
lmodlcan |
|- ( ( C e. LMod /\ ( ( S ` ( M ` T ) ) e. ( Base ` C ) /\ ( I ` ( S ` T ) ) e. ( Base ` C ) /\ ( S ` T ) e. ( Base ` C ) ) ) -> ( ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) <-> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) ) |
34 |
10 30 32 12 33
|
syl13anc |
|- ( ph -> ( ( ( S ` T ) ( +g ` C ) ( S ` ( M ` T ) ) ) = ( ( S ` T ) ( +g ` C ) ( I ` ( S ` T ) ) ) <-> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) ) |
35 |
29 34
|
mpbid |
|- ( ph -> ( S ` ( M ` T ) ) = ( I ` ( S ` T ) ) ) |