Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
3 4 15 13 11 14
|
lspsnne2 |
|- ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) |
17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
18 |
3 17 4
|
lspsncl |
|- ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
19 |
15 13 18
|
syl2anc |
|- ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
20 |
3 17 4
|
lspsncl |
|- ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
21 |
15 11 20
|
syl2anc |
|- ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
22 |
1 2 17 7 9 19 21
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { u } ) ) = ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) = ( N ` { v } ) ) ) |
23 |
22
|
necon3bid |
|- ( ph -> ( ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) =/= ( N ` { v } ) ) ) |
24 |
16 23
|
mpbird |
|- ( ph -> ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) |
26 |
24 25 12
|
3netr3d |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |