| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
| 5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
| 7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
| 8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
| 11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
| 12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
| 13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
| 14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
| 15 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 16 |
3 4 15 13 11 14
|
lspsnne2 |
|- ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) |
| 17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 18 |
3 17 4
|
lspsncl |
|- ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 19 |
15 13 18
|
syl2anc |
|- ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 20 |
3 17 4
|
lspsncl |
|- ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 21 |
15 11 20
|
syl2anc |
|- ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 22 |
1 2 17 7 9 19 21
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { u } ) ) = ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) = ( N ` { v } ) ) ) |
| 23 |
22
|
necon3bid |
|- ( ph -> ( ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) =/= ( N ` { v } ) ) ) |
| 24 |
16 23
|
mpbird |
|- ( ph -> ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) |
| 26 |
24 25 12
|
3netr3d |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |