Metamath Proof Explorer


Theorem hdmaprnlem1N

Description: Part of proof of part 12 in Baer p. 49 line 10, Gu' =/= Gs. Our ( N{ v } ) is Baer's T. (Contributed by NM, 26-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h
|- H = ( LHyp ` K )
hdmaprnlem1.u
|- U = ( ( DVecH ` K ) ` W )
hdmaprnlem1.v
|- V = ( Base ` U )
hdmaprnlem1.n
|- N = ( LSpan ` U )
hdmaprnlem1.c
|- C = ( ( LCDual ` K ) ` W )
hdmaprnlem1.l
|- L = ( LSpan ` C )
hdmaprnlem1.m
|- M = ( ( mapd ` K ) ` W )
hdmaprnlem1.s
|- S = ( ( HDMap ` K ) ` W )
hdmaprnlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaprnlem1.se
|- ( ph -> s e. ( D \ { Q } ) )
hdmaprnlem1.ve
|- ( ph -> v e. V )
hdmaprnlem1.e
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
hdmaprnlem1.ue
|- ( ph -> u e. V )
hdmaprnlem1.un
|- ( ph -> -. u e. ( N ` { v } ) )
Assertion hdmaprnlem1N
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h
 |-  H = ( LHyp ` K )
2 hdmaprnlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaprnlem1.v
 |-  V = ( Base ` U )
4 hdmaprnlem1.n
 |-  N = ( LSpan ` U )
5 hdmaprnlem1.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmaprnlem1.l
 |-  L = ( LSpan ` C )
7 hdmaprnlem1.m
 |-  M = ( ( mapd ` K ) ` W )
8 hdmaprnlem1.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmaprnlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmaprnlem1.se
 |-  ( ph -> s e. ( D \ { Q } ) )
11 hdmaprnlem1.ve
 |-  ( ph -> v e. V )
12 hdmaprnlem1.e
 |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
13 hdmaprnlem1.ue
 |-  ( ph -> u e. V )
14 hdmaprnlem1.un
 |-  ( ph -> -. u e. ( N ` { v } ) )
15 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
16 3 4 15 13 11 14 lspsnne2
 |-  ( ph -> ( N ` { u } ) =/= ( N ` { v } ) )
17 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
18 3 17 4 lspsncl
 |-  ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) )
19 15 13 18 syl2anc
 |-  ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) )
20 3 17 4 lspsncl
 |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) )
21 15 11 20 syl2anc
 |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) )
22 1 2 17 7 9 19 21 mapd11
 |-  ( ph -> ( ( M ` ( N ` { u } ) ) = ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) = ( N ` { v } ) ) )
23 22 necon3bid
 |-  ( ph -> ( ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) =/= ( N ` { v } ) ) )
24 16 23 mpbird
 |-  ( ph -> ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) )
25 1 2 3 4 5 6 7 8 9 13 hdmap10
 |-  ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) )
26 24 25 12 3netr3d
 |-  ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) )