| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 16 | 3 4 15 13 11 14 | lspsnne2 |  |-  ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) | 
						
							| 17 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 18 | 3 17 4 | lspsncl |  |-  ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 19 | 15 13 18 | syl2anc |  |-  ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 20 | 3 17 4 | lspsncl |  |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 21 | 15 11 20 | syl2anc |  |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 22 | 1 2 17 7 9 19 21 | mapd11 |  |-  ( ph -> ( ( M ` ( N ` { u } ) ) = ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) = ( N ` { v } ) ) ) | 
						
							| 23 | 22 | necon3bid |  |-  ( ph -> ( ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) <-> ( N ` { u } ) =/= ( N ` { v } ) ) ) | 
						
							| 24 | 16 23 | mpbird |  |-  ( ph -> ( M ` ( N ` { u } ) ) =/= ( M ` ( N ` { v } ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 13 | hdmap10 |  |-  ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) | 
						
							| 26 | 24 25 12 | 3netr3d |  |-  ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |