Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
3 4 15 13 11 14
|
lspsnne2 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
18 |
3 17 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
19 |
15 13 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
20 |
3 17 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
21 |
15 11 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
22 |
1 2 17 7 9 19 21
|
mapd11 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ↔ ( 𝑁 ‘ { 𝑢 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
23 |
22
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ≠ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ↔ ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) ) |
24 |
16 23
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ≠ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
26 |
24 25 12
|
3netr3d |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ≠ ( 𝐿 ‘ { 𝑠 } ) ) |