| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 16 | 3 4 15 13 11 14 | lspsnne2 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 } )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 17 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 18 | 3 17 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑢  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑢 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 19 | 15 13 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 20 | 3 17 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑣  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 21 | 15 11 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 22 | 1 2 17 7 9 19 21 | mapd11 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  =  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ↔  ( 𝑁 ‘ { 𝑢 } )  =  ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 23 | 22 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ≠  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ↔  ( 𝑁 ‘ { 𝑢 } )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 24 | 16 23 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ≠  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 13 | hdmap10 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) | 
						
							| 26 | 24 25 12 | 3netr3d | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } )  ≠  ( 𝐿 ‘ { 𝑠 } ) ) |