Metamath Proof Explorer


Theorem hdmapval3N

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h H = LHyp K
hdmapval3.e E = I Base K I LTrn K W
hdmapval3.u U = DVecH K W
hdmapval3.v V = Base U
hdmapval3.n N = LSpan U
hdmapval3.c C = LCDual K W
hdmapval3.d D = Base C
hdmapval3.j J = HVMap K W
hdmapval3.i I = HDMap1 K W
hdmapval3.s S = HDMap K W
hdmapval3.k φ K HL W H
hdmapval3.te φ N T N E
hdmapval3.t φ T V
Assertion hdmapval3N φ S T = I E J E T

Proof

Step Hyp Ref Expression
1 hdmapval3.h H = LHyp K
2 hdmapval3.e E = I Base K I LTrn K W
3 hdmapval3.u U = DVecH K W
4 hdmapval3.v V = Base U
5 hdmapval3.n N = LSpan U
6 hdmapval3.c C = LCDual K W
7 hdmapval3.d D = Base C
8 hdmapval3.j J = HVMap K W
9 hdmapval3.i I = HDMap1 K W
10 hdmapval3.s S = HDMap K W
11 hdmapval3.k φ K HL W H
12 hdmapval3.te φ N T N E
13 hdmapval3.t φ T V
14 fveq2 T = 0 U S T = S 0 U
15 oteq3 T = 0 U E J E T = E J E 0 U
16 15 fveq2d T = 0 U I E J E T = I E J E 0 U
17 14 16 eqeq12d T = 0 U S T = I E J E T S 0 U = I E J E 0 U
18 eqid Base K = Base K
19 eqid LTrn K W = LTrn K W
20 eqid 0 U = 0 U
21 1 18 19 3 4 20 2 11 dvheveccl φ E V 0 U
22 21 eldifad φ E V
23 1 3 4 5 11 22 13 dvh3dim φ x V ¬ x N E T
24 23 adantr φ T 0 U x V ¬ x N E T
25 simp1l φ T 0 U x V ¬ x N E T φ
26 25 11 syl φ T 0 U x V ¬ x N E T K HL W H
27 25 12 syl φ T 0 U x V ¬ x N E T N T N E
28 25 13 syl φ T 0 U x V ¬ x N E T T V
29 simp1r φ T 0 U x V ¬ x N E T T 0 U
30 eldifsn T V 0 U T V T 0 U
31 28 29 30 sylanbrc φ T 0 U x V ¬ x N E T T V 0 U
32 simp2 φ T 0 U x V ¬ x N E T x V
33 simp3 φ T 0 U x V ¬ x N E T ¬ x N E T
34 1 2 3 4 5 6 7 8 9 10 26 27 31 32 33 hdmapval3lemN φ T 0 U x V ¬ x N E T S T = I E J E T
35 34 rexlimdv3a φ T 0 U x V ¬ x N E T S T = I E J E T
36 24 35 mpd φ T 0 U S T = I E J E T
37 eqid 0 C = 0 C
38 1 3 20 6 37 10 11 hdmapval0 φ S 0 U = 0 C
39 1 3 4 20 6 7 37 8 11 21 hvmapcl2 φ J E D 0 C
40 39 eldifad φ J E D
41 1 3 4 20 6 7 37 9 11 40 22 hdmap1val0 φ I E J E 0 U = 0 C
42 38 41 eqtr4d φ S 0 U = I E J E 0 U
43 17 36 42 pm2.61ne φ S T = I E J E T