| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapval3.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapval3.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapval3.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hdmapval3.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hdmapval3.n |  |-  N = ( LSpan ` U ) | 
						
							| 6 |  | hdmapval3.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | hdmapval3.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | hdmapval3.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 9 |  | hdmapval3.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 10 |  | hdmapval3.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapval3.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmapval3.te |  |-  ( ph -> ( N ` { T } ) =/= ( N ` { E } ) ) | 
						
							| 13 |  | hdmapval3.t |  |-  ( ph -> T e. V ) | 
						
							| 14 |  | fveq2 |  |-  ( T = ( 0g ` U ) -> ( S ` T ) = ( S ` ( 0g ` U ) ) ) | 
						
							| 15 |  | oteq3 |  |-  ( T = ( 0g ` U ) -> <. E , ( J ` E ) , T >. = <. E , ( J ` E ) , ( 0g ` U ) >. ) | 
						
							| 16 | 15 | fveq2d |  |-  ( T = ( 0g ` U ) -> ( I ` <. E , ( J ` E ) , T >. ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) | 
						
							| 17 | 14 16 | eqeq12d |  |-  ( T = ( 0g ` U ) -> ( ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) <-> ( S ` ( 0g ` U ) ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 19 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 21 | 1 18 19 3 4 20 2 11 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 22 | 21 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 23 | 1 3 4 5 11 22 13 | dvh3dim |  |-  ( ph -> E. x e. V -. x e. ( N ` { E , T } ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ T =/= ( 0g ` U ) ) -> E. x e. V -. x e. ( N ` { E , T } ) ) | 
						
							| 25 |  | simp1l |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ph ) | 
						
							| 26 | 25 11 | syl |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 27 | 25 12 | syl |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( N ` { T } ) =/= ( N ` { E } ) ) | 
						
							| 28 | 25 13 | syl |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T e. V ) | 
						
							| 29 |  | simp1r |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T =/= ( 0g ` U ) ) | 
						
							| 30 |  | eldifsn |  |-  ( T e. ( V \ { ( 0g ` U ) } ) <-> ( T e. V /\ T =/= ( 0g ` U ) ) ) | 
						
							| 31 | 28 29 30 | sylanbrc |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 32 |  | simp2 |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> x e. V ) | 
						
							| 33 |  | simp3 |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> -. x e. ( N ` { E , T } ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 26 27 31 32 33 | hdmapval3lemN |  |-  ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) | 
						
							| 35 | 34 | rexlimdv3a |  |-  ( ( ph /\ T =/= ( 0g ` U ) ) -> ( E. x e. V -. x e. ( N ` { E , T } ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) ) | 
						
							| 36 | 24 35 | mpd |  |-  ( ( ph /\ T =/= ( 0g ` U ) ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 38 | 1 3 20 6 37 10 11 | hdmapval0 |  |-  ( ph -> ( S ` ( 0g ` U ) ) = ( 0g ` C ) ) | 
						
							| 39 | 1 3 4 20 6 7 37 8 11 21 | hvmapcl2 |  |-  ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) | 
						
							| 40 | 39 | eldifad |  |-  ( ph -> ( J ` E ) e. D ) | 
						
							| 41 | 1 3 4 20 6 7 37 9 11 40 22 | hdmap1val0 |  |-  ( ph -> ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) = ( 0g ` C ) ) | 
						
							| 42 | 38 41 | eqtr4d |  |-  ( ph -> ( S ` ( 0g ` U ) ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) | 
						
							| 43 | 17 36 42 | pm2.61ne |  |-  ( ph -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |