Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval3.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapval3.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapval3.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hdmapval3.v |
|- V = ( Base ` U ) |
5 |
|
hdmapval3.n |
|- N = ( LSpan ` U ) |
6 |
|
hdmapval3.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
hdmapval3.d |
|- D = ( Base ` C ) |
8 |
|
hdmapval3.j |
|- J = ( ( HVMap ` K ) ` W ) |
9 |
|
hdmapval3.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
10 |
|
hdmapval3.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapval3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmapval3.te |
|- ( ph -> ( N ` { T } ) =/= ( N ` { E } ) ) |
13 |
|
hdmapval3.t |
|- ( ph -> T e. V ) |
14 |
|
fveq2 |
|- ( T = ( 0g ` U ) -> ( S ` T ) = ( S ` ( 0g ` U ) ) ) |
15 |
|
oteq3 |
|- ( T = ( 0g ` U ) -> <. E , ( J ` E ) , T >. = <. E , ( J ` E ) , ( 0g ` U ) >. ) |
16 |
15
|
fveq2d |
|- ( T = ( 0g ` U ) -> ( I ` <. E , ( J ` E ) , T >. ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) |
17 |
14 16
|
eqeq12d |
|- ( T = ( 0g ` U ) -> ( ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) <-> ( S ` ( 0g ` U ) ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
20 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
21 |
1 18 19 3 4 20 2 11
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
22 |
21
|
eldifad |
|- ( ph -> E e. V ) |
23 |
1 3 4 5 11 22 13
|
dvh3dim |
|- ( ph -> E. x e. V -. x e. ( N ` { E , T } ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> E. x e. V -. x e. ( N ` { E , T } ) ) |
25 |
|
simp1l |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ph ) |
26 |
25 11
|
syl |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( K e. HL /\ W e. H ) ) |
27 |
25 12
|
syl |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( N ` { T } ) =/= ( N ` { E } ) ) |
28 |
25 13
|
syl |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T e. V ) |
29 |
|
simp1r |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T =/= ( 0g ` U ) ) |
30 |
|
eldifsn |
|- ( T e. ( V \ { ( 0g ` U ) } ) <-> ( T e. V /\ T =/= ( 0g ` U ) ) ) |
31 |
28 29 30
|
sylanbrc |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> T e. ( V \ { ( 0g ` U ) } ) ) |
32 |
|
simp2 |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> x e. V ) |
33 |
|
simp3 |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> -. x e. ( N ` { E , T } ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 26 27 31 32 33
|
hdmapval3lemN |
|- ( ( ( ph /\ T =/= ( 0g ` U ) ) /\ x e. V /\ -. x e. ( N ` { E , T } ) ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |
35 |
34
|
rexlimdv3a |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( E. x e. V -. x e. ( N ` { E , T } ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) ) |
36 |
24 35
|
mpd |
|- ( ( ph /\ T =/= ( 0g ` U ) ) -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |
37 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
38 |
1 3 20 6 37 10 11
|
hdmapval0 |
|- ( ph -> ( S ` ( 0g ` U ) ) = ( 0g ` C ) ) |
39 |
1 3 4 20 6 7 37 8 11 21
|
hvmapcl2 |
|- ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) |
40 |
39
|
eldifad |
|- ( ph -> ( J ` E ) e. D ) |
41 |
1 3 4 20 6 7 37 9 11 40 22
|
hdmap1val0 |
|- ( ph -> ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) = ( 0g ` C ) ) |
42 |
38 41
|
eqtr4d |
|- ( ph -> ( S ` ( 0g ` U ) ) = ( I ` <. E , ( J ` E ) , ( 0g ` U ) >. ) ) |
43 |
17 36 42
|
pm2.61ne |
|- ( ph -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |