| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapval3.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapval3.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapval3.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hdmapval3.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hdmapval3.n |  |-  N = ( LSpan ` U ) | 
						
							| 6 |  | hdmapval3.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | hdmapval3.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | hdmapval3.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 9 |  | hdmapval3.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 10 |  | hdmapval3.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapval3.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmapval3.te |  |-  ( ph -> ( N ` { T } ) =/= ( N ` { E } ) ) | 
						
							| 13 |  | hdmapval3lem.t |  |-  ( ph -> T e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 14 |  | hdmapval3lem.x |  |-  ( ph -> x e. V ) | 
						
							| 15 |  | hdmapval3lem.xn |  |-  ( ph -> -. x e. ( N ` { E , T } ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 17 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 18 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 20 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 21 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 22 | 1 20 21 3 4 16 2 11 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 23 | 1 3 4 16 6 7 19 8 11 22 | hvmapcl2 |  |-  ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) | 
						
							| 24 | 23 | eldifad |  |-  ( ph -> ( J ` E ) e. D ) | 
						
							| 25 | 1 3 4 16 5 6 17 18 8 11 22 | mapdhvmap |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) ) | 
						
							| 26 | 1 3 11 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 27 | 22 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 28 | 13 | eldifad |  |-  ( ph -> T e. V ) | 
						
							| 29 | 4 5 26 14 27 28 15 | lspindpi |  |-  ( ph -> ( ( N ` { x } ) =/= ( N ` { E } ) /\ ( N ` { x } ) =/= ( N ` { T } ) ) ) | 
						
							| 30 | 29 | simpld |  |-  ( ph -> ( N ` { x } ) =/= ( N ` { E } ) ) | 
						
							| 31 | 30 | necomd |  |-  ( ph -> ( N ` { E } ) =/= ( N ` { x } ) ) | 
						
							| 32 | 1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14 | hdmap1cl |  |-  ( ph -> ( I ` <. E , ( J ` E ) , x >. ) e. D ) | 
						
							| 33 |  | eqidd |  |-  ( ph -> ( I ` <. E , ( J ` E ) , x >. ) = ( I ` <. E , ( J ` E ) , x >. ) ) | 
						
							| 34 |  | eqid |  |-  ( -g ` U ) = ( -g ` U ) | 
						
							| 35 |  | eqid |  |-  ( -g ` C ) = ( -g ` C ) | 
						
							| 36 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 37 | 1 3 11 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 38 | 4 36 5 37 27 28 | lspprcl |  |-  ( ph -> ( N ` { E , T } ) e. ( LSubSp ` U ) ) | 
						
							| 39 | 16 36 37 38 14 15 | lssneln0 |  |-  ( ph -> x e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 40 | 1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25 | hdmap1eq |  |-  ( ph -> ( ( I ` <. E , ( J ` E ) , x >. ) = ( I ` <. E , ( J ` E ) , x >. ) <-> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) /\ ( ( ( mapd ` K ) ` W ) ` ( N ` { ( E ( -g ` U ) x ) } ) ) = ( ( LSpan ` C ) ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , x >. ) ) } ) ) ) ) | 
						
							| 41 | 33 40 | mpbid |  |-  ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) /\ ( ( ( mapd ` K ) ` W ) ` ( N ` { ( E ( -g ` U ) x ) } ) ) = ( ( LSpan ` C ) ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , x >. ) ) } ) ) ) | 
						
							| 42 | 41 | simpld |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) ) | 
						
							| 43 | 12 | necomd |  |-  ( ph -> ( N ` { E } ) =/= ( N ` { T } ) ) | 
						
							| 44 | 4 5 37 27 28 | lspprid1 |  |-  ( ph -> E e. ( N ` { E , T } ) ) | 
						
							| 45 | 36 5 37 38 44 | ellspsn5 |  |-  ( ph -> ( N ` { E } ) C_ ( N ` { E , T } ) ) | 
						
							| 46 | 45 45 | unssd |  |-  ( ph -> ( ( N ` { E } ) u. ( N ` { E } ) ) C_ ( N ` { E , T } ) ) | 
						
							| 47 | 46 15 | ssneldd |  |-  ( ph -> -. x e. ( ( N ` { E } ) u. ( N ` { E } ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 11 27 14 47 | hdmapval2 |  |-  ( ph -> ( S ` E ) = ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , E >. ) ) | 
						
							| 49 | 1 2 8 10 11 | hdmapevec |  |-  ( ph -> ( S ` E ) = ( J ` E ) ) | 
						
							| 50 | 48 49 | eqtr3d |  |-  ( ph -> ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , E >. ) = ( J ` E ) ) | 
						
							| 51 | 4 5 37 27 28 | lspprid2 |  |-  ( ph -> T e. ( N ` { E , T } ) ) | 
						
							| 52 | 36 5 37 38 51 | ellspsn5 |  |-  ( ph -> ( N ` { T } ) C_ ( N ` { E , T } ) ) | 
						
							| 53 | 45 52 | unssd |  |-  ( ph -> ( ( N ` { E } ) u. ( N ` { T } ) ) C_ ( N ` { E , T } ) ) | 
						
							| 54 | 53 15 | ssneldd |  |-  ( ph -> -. x e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 9 10 11 28 14 54 | hdmapval2 |  |-  ( ph -> ( S ` T ) = ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , T >. ) ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ph -> ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , T >. ) = ( S ` T ) ) | 
						
							| 57 | 1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56 | hdmap1eq4N |  |-  ( ph -> ( I ` <. E , ( J ` E ) , T >. ) = ( S ` T ) ) | 
						
							| 58 | 57 | eqcomd |  |-  ( ph -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |