Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval3.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapval3.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapval3.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hdmapval3.v |
|- V = ( Base ` U ) |
5 |
|
hdmapval3.n |
|- N = ( LSpan ` U ) |
6 |
|
hdmapval3.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
hdmapval3.d |
|- D = ( Base ` C ) |
8 |
|
hdmapval3.j |
|- J = ( ( HVMap ` K ) ` W ) |
9 |
|
hdmapval3.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
10 |
|
hdmapval3.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapval3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmapval3.te |
|- ( ph -> ( N ` { T } ) =/= ( N ` { E } ) ) |
13 |
|
hdmapval3lem.t |
|- ( ph -> T e. ( V \ { ( 0g ` U ) } ) ) |
14 |
|
hdmapval3lem.x |
|- ( ph -> x e. V ) |
15 |
|
hdmapval3lem.xn |
|- ( ph -> -. x e. ( N ` { E , T } ) ) |
16 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
17 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
18 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
19 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
22 |
1 20 21 3 4 16 2 11
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
23 |
1 3 4 16 6 7 19 8 11 22
|
hvmapcl2 |
|- ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) |
24 |
23
|
eldifad |
|- ( ph -> ( J ` E ) e. D ) |
25 |
1 3 4 16 5 6 17 18 8 11 22
|
mapdhvmap |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) ) |
26 |
1 3 11
|
dvhlvec |
|- ( ph -> U e. LVec ) |
27 |
22
|
eldifad |
|- ( ph -> E e. V ) |
28 |
13
|
eldifad |
|- ( ph -> T e. V ) |
29 |
4 5 26 14 27 28 15
|
lspindpi |
|- ( ph -> ( ( N ` { x } ) =/= ( N ` { E } ) /\ ( N ` { x } ) =/= ( N ` { T } ) ) ) |
30 |
29
|
simpld |
|- ( ph -> ( N ` { x } ) =/= ( N ` { E } ) ) |
31 |
30
|
necomd |
|- ( ph -> ( N ` { E } ) =/= ( N ` { x } ) ) |
32 |
1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14
|
hdmap1cl |
|- ( ph -> ( I ` <. E , ( J ` E ) , x >. ) e. D ) |
33 |
|
eqidd |
|- ( ph -> ( I ` <. E , ( J ` E ) , x >. ) = ( I ` <. E , ( J ` E ) , x >. ) ) |
34 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
35 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
36 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
37 |
1 3 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
38 |
4 36 5 37 27 28
|
lspprcl |
|- ( ph -> ( N ` { E , T } ) e. ( LSubSp ` U ) ) |
39 |
16 36 37 38 14 15
|
lssneln0 |
|- ( ph -> x e. ( V \ { ( 0g ` U ) } ) ) |
40 |
1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25
|
hdmap1eq |
|- ( ph -> ( ( I ` <. E , ( J ` E ) , x >. ) = ( I ` <. E , ( J ` E ) , x >. ) <-> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) /\ ( ( ( mapd ` K ) ` W ) ` ( N ` { ( E ( -g ` U ) x ) } ) ) = ( ( LSpan ` C ) ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , x >. ) ) } ) ) ) ) |
41 |
33 40
|
mpbid |
|- ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) /\ ( ( ( mapd ` K ) ` W ) ` ( N ` { ( E ( -g ` U ) x ) } ) ) = ( ( LSpan ` C ) ` { ( ( J ` E ) ( -g ` C ) ( I ` <. E , ( J ` E ) , x >. ) ) } ) ) ) |
42 |
41
|
simpld |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { x } ) ) = ( ( LSpan ` C ) ` { ( I ` <. E , ( J ` E ) , x >. ) } ) ) |
43 |
12
|
necomd |
|- ( ph -> ( N ` { E } ) =/= ( N ` { T } ) ) |
44 |
4 5 37 27 28
|
lspprid1 |
|- ( ph -> E e. ( N ` { E , T } ) ) |
45 |
36 5 37 38 44
|
lspsnel5a |
|- ( ph -> ( N ` { E } ) C_ ( N ` { E , T } ) ) |
46 |
45 45
|
unssd |
|- ( ph -> ( ( N ` { E } ) u. ( N ` { E } ) ) C_ ( N ` { E , T } ) ) |
47 |
46 15
|
ssneldd |
|- ( ph -> -. x e. ( ( N ` { E } ) u. ( N ` { E } ) ) ) |
48 |
1 2 3 4 5 6 7 8 9 10 11 27 14 47
|
hdmapval2 |
|- ( ph -> ( S ` E ) = ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , E >. ) ) |
49 |
1 2 8 10 11
|
hdmapevec |
|- ( ph -> ( S ` E ) = ( J ` E ) ) |
50 |
48 49
|
eqtr3d |
|- ( ph -> ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , E >. ) = ( J ` E ) ) |
51 |
4 5 37 27 28
|
lspprid2 |
|- ( ph -> T e. ( N ` { E , T } ) ) |
52 |
36 5 37 38 51
|
lspsnel5a |
|- ( ph -> ( N ` { T } ) C_ ( N ` { E , T } ) ) |
53 |
45 52
|
unssd |
|- ( ph -> ( ( N ` { E } ) u. ( N ` { T } ) ) C_ ( N ` { E , T } ) ) |
54 |
53 15
|
ssneldd |
|- ( ph -> -. x e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) |
55 |
1 2 3 4 5 6 7 8 9 10 11 28 14 54
|
hdmapval2 |
|- ( ph -> ( S ` T ) = ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , T >. ) ) |
56 |
55
|
eqcomd |
|- ( ph -> ( I ` <. x , ( I ` <. E , ( J ` E ) , x >. ) , T >. ) = ( S ` T ) ) |
57 |
1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56
|
hdmap1eq4N |
|- ( ph -> ( I ` <. E , ( J ` E ) , T >. ) = ( S ` T ) ) |
58 |
57
|
eqcomd |
|- ( ph -> ( S ` T ) = ( I ` <. E , ( J ` E ) , T >. ) ) |