| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapevec.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapevec.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 3 |
|
hdmapevec.j |
|- J = ( ( HVMap ` K ) ` W ) |
| 4 |
|
hdmapevec.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 5 |
|
hdmapevec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
hdmapevec2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 7 |
|
hdmapevec2.r |
|- R = ( Scalar ` U ) |
| 8 |
|
hdmapevec2.i |
|- .1. = ( 1r ` R ) |
| 9 |
1 2 3 4 5
|
hdmapevec |
|- ( ph -> ( S ` E ) = ( J ` E ) ) |
| 10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 11 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 12 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 13 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 17 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 18 |
1 16 17 6 11 14 2 5
|
dvheveccl |
|- ( ph -> E e. ( ( Base ` U ) \ { ( 0g ` U ) } ) ) |
| 19 |
1 6 10 11 12 13 14 7 15 3 5 18
|
hvmapval |
|- ( ph -> ( J ` E ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ) |
| 20 |
9 19
|
eqtrd |
|- ( ph -> ( S ` E ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ) |
| 21 |
20
|
fveq1d |
|- ( ph -> ( ( S ` E ) ` E ) = ( ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ` E ) ) |
| 22 |
|
eqid |
|- ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) |
| 23 |
1 10 6 11 12 13 14 7 15 8 5 18 22
|
dochfl1 |
|- ( ph -> ( ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ` E ) = .1. ) |
| 24 |
21 23
|
eqtrd |
|- ( ph -> ( ( S ` E ) ` E ) = .1. ) |