| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapevec.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapevec.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 4 |  | hdmapevec.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmapevec.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | hdmapevec2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | hdmapevec2.r |  |-  R = ( Scalar ` U ) | 
						
							| 8 |  | hdmapevec2.i |  |-  .1. = ( 1r ` R ) | 
						
							| 9 | 1 2 3 4 5 | hdmapevec |  |-  ( ph -> ( S ` E ) = ( J ` E ) ) | 
						
							| 10 |  | eqid |  |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 12 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 13 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 18 | 1 16 17 6 11 14 2 5 | dvheveccl |  |-  ( ph -> E e. ( ( Base ` U ) \ { ( 0g ` U ) } ) ) | 
						
							| 19 | 1 6 10 11 12 13 14 7 15 3 5 18 | hvmapval |  |-  ( ph -> ( J ` E ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ) | 
						
							| 20 | 9 19 | eqtrd |  |-  ( ph -> ( S ` E ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ) | 
						
							| 21 | 20 | fveq1d |  |-  ( ph -> ( ( S ` E ) ` E ) = ( ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ` E ) ) | 
						
							| 22 |  | eqid |  |-  ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) | 
						
							| 23 | 1 10 6 11 12 13 14 7 15 8 5 18 22 | dochfl1 |  |-  ( ph -> ( ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` R ) E. w e. ( ( ( ocH ` K ) ` W ) ` { E } ) v = ( w ( +g ` U ) ( k ( .s ` U ) E ) ) ) ) ` E ) = .1. ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( ph -> ( ( S ` E ) ` E ) = .1. ) |