Metamath Proof Explorer


Theorem hdmapevec2

Description: The inner product of the reference vector E with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of Holland95 p. 14 line 32, [ e , e ] =/= 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmapevec.h H=LHypK
hdmapevec.e E=IBaseKILTrnKW
hdmapevec.j J=HVMapKW
hdmapevec.s S=HDMapKW
hdmapevec.k φKHLWH
hdmapevec2.u U=DVecHKW
hdmapevec2.r R=ScalarU
hdmapevec2.i 1˙=1R
Assertion hdmapevec2 φSEE=1˙

Proof

Step Hyp Ref Expression
1 hdmapevec.h H=LHypK
2 hdmapevec.e E=IBaseKILTrnKW
3 hdmapevec.j J=HVMapKW
4 hdmapevec.s S=HDMapKW
5 hdmapevec.k φKHLWH
6 hdmapevec2.u U=DVecHKW
7 hdmapevec2.r R=ScalarU
8 hdmapevec2.i 1˙=1R
9 1 2 3 4 5 hdmapevec φSE=JE
10 eqid ocHKW=ocHKW
11 eqid BaseU=BaseU
12 eqid +U=+U
13 eqid U=U
14 eqid 0U=0U
15 eqid BaseR=BaseR
16 eqid BaseK=BaseK
17 eqid LTrnKW=LTrnKW
18 1 16 17 6 11 14 2 5 dvheveccl φEBaseU0U
19 1 6 10 11 12 13 14 7 15 3 5 18 hvmapval φJE=vBaseUιkBaseR|wocHKWEv=w+UkUE
20 9 19 eqtrd φSE=vBaseUιkBaseR|wocHKWEv=w+UkUE
21 20 fveq1d φSEE=vBaseUιkBaseR|wocHKWEv=w+UkUEE
22 eqid vBaseUιkBaseR|wocHKWEv=w+UkUE=vBaseUιkBaseR|wocHKWEv=w+UkUE
23 1 10 6 11 12 13 14 7 15 8 5 18 22 dochfl1 φvBaseUιkBaseR|wocHKWEv=w+UkUEE=1˙
24 21 23 eqtrd φSEE=1˙