| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem15.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem15.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem15.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem15.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem15.d |  |-  D = ( Base ` C ) | 
						
							| 7 |  | hdmaprnlem15.q |  |-  .0. = ( 0g ` C ) | 
						
							| 8 |  | hdmaprnlem15.l |  |-  L = ( LSpan ` C ) | 
						
							| 9 |  | hdmaprnlem15.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 10 |  | hdmaprnlem15.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmaprnlem15.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmaprnlem17.se |  |-  ( ph -> s e. D ) | 
						
							| 13 |  | eleq1 |  |-  ( s = .0. -> ( s e. ran S <-> .0. e. ran S ) ) | 
						
							| 14 | 11 | adantr |  |-  ( ( ph /\ s =/= .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 | 12 | anim1i |  |-  ( ( ph /\ s =/= .0. ) -> ( s e. D /\ s =/= .0. ) ) | 
						
							| 16 |  | eldifsn |  |-  ( s e. ( D \ { .0. } ) <-> ( s e. D /\ s =/= .0. ) ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ( ph /\ s =/= .0. ) -> s e. ( D \ { .0. } ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 14 17 | hdmaprnlem16N |  |-  ( ( ph /\ s =/= .0. ) -> s e. ran S ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 20 | 1 2 19 5 7 10 11 | hdmapval0 |  |-  ( ph -> ( S ` ( 0g ` U ) ) = .0. ) | 
						
							| 21 | 1 2 3 10 11 | hdmapfnN |  |-  ( ph -> S Fn V ) | 
						
							| 22 | 1 2 11 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 23 | 3 19 | lmod0vcl |  |-  ( U e. LMod -> ( 0g ` U ) e. V ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( 0g ` U ) e. V ) | 
						
							| 25 |  | fnfvelrn |  |-  ( ( S Fn V /\ ( 0g ` U ) e. V ) -> ( S ` ( 0g ` U ) ) e. ran S ) | 
						
							| 26 | 21 24 25 | syl2anc |  |-  ( ph -> ( S ` ( 0g ` U ) ) e. ran S ) | 
						
							| 27 | 20 26 | eqeltrrd |  |-  ( ph -> .0. e. ran S ) | 
						
							| 28 | 13 18 27 | pm2.61ne |  |-  ( ph -> s e. ran S ) |