Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem15.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem15.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem15.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem15.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem15.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem15.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
7 |
|
hdmaprnlem15.q |
⊢ 0 = ( 0g ‘ 𝐶 ) |
8 |
|
hdmaprnlem15.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
9 |
|
hdmaprnlem15.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmaprnlem15.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmaprnlem15.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmaprnlem17.se |
⊢ ( 𝜑 → 𝑠 ∈ 𝐷 ) |
13 |
|
eleq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 ∈ ran 𝑆 ↔ 0 ∈ ran 𝑆 ) ) |
14 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
12
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑠 ≠ 0 ) → ( 𝑠 ∈ 𝐷 ∧ 𝑠 ≠ 0 ) ) |
16 |
|
eldifsn |
⊢ ( 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ↔ ( 𝑠 ∈ 𝐷 ∧ 𝑠 ≠ 0 ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑠 ≠ 0 ) → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 14 17
|
hdmaprnlem16N |
⊢ ( ( 𝜑 ∧ 𝑠 ≠ 0 ) → 𝑠 ∈ ran 𝑆 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
20 |
1 2 19 5 7 10 11
|
hdmapval0 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = 0 ) |
21 |
1 2 3 10 11
|
hdmapfnN |
⊢ ( 𝜑 → 𝑆 Fn 𝑉 ) |
22 |
1 2 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
3 19
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
25 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn 𝑉 ∧ ( 0g ‘ 𝑈 ) ∈ 𝑉 ) → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ran 𝑆 ) |
26 |
21 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ran 𝑆 ) |
27 |
20 26
|
eqeltrrd |
⊢ ( 𝜑 → 0 ∈ ran 𝑆 ) |
28 |
13 18 27
|
pm2.61ne |
⊢ ( 𝜑 → 𝑠 ∈ ran 𝑆 ) |