Metamath Proof Explorer


Theorem hdmaprnlem17N

Description: Lemma for hdmaprnN . Include zero. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaprnlem15.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.v 𝑉 = ( Base ‘ 𝑈 )
hdmaprnlem15.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmaprnlem15.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.d 𝐷 = ( Base ‘ 𝐶 )
hdmaprnlem15.q 0 = ( 0g𝐶 )
hdmaprnlem15.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmaprnlem15.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaprnlem17.se ( 𝜑𝑠𝐷 )
Assertion hdmaprnlem17N ( 𝜑𝑠 ∈ ran 𝑆 )

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaprnlem15.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaprnlem15.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaprnlem15.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmaprnlem15.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmaprnlem15.d 𝐷 = ( Base ‘ 𝐶 )
7 hdmaprnlem15.q 0 = ( 0g𝐶 )
8 hdmaprnlem15.l 𝐿 = ( LSpan ‘ 𝐶 )
9 hdmaprnlem15.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
10 hdmaprnlem15.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmaprnlem15.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmaprnlem17.se ( 𝜑𝑠𝐷 )
13 eleq1 ( 𝑠 = 0 → ( 𝑠 ∈ ran 𝑆0 ∈ ran 𝑆 ) )
14 11 adantr ( ( 𝜑𝑠0 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 12 anim1i ( ( 𝜑𝑠0 ) → ( 𝑠𝐷𝑠0 ) )
16 eldifsn ( 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ↔ ( 𝑠𝐷𝑠0 ) )
17 15 16 sylibr ( ( 𝜑𝑠0 ) → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) )
18 1 2 3 4 5 6 7 8 9 10 14 17 hdmaprnlem16N ( ( 𝜑𝑠0 ) → 𝑠 ∈ ran 𝑆 )
19 eqid ( 0g𝑈 ) = ( 0g𝑈 )
20 1 2 19 5 7 10 11 hdmapval0 ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) = 0 )
21 1 2 3 10 11 hdmapfnN ( 𝜑𝑆 Fn 𝑉 )
22 1 2 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
23 3 19 lmod0vcl ( 𝑈 ∈ LMod → ( 0g𝑈 ) ∈ 𝑉 )
24 22 23 syl ( 𝜑 → ( 0g𝑈 ) ∈ 𝑉 )
25 fnfvelrn ( ( 𝑆 Fn 𝑉 ∧ ( 0g𝑈 ) ∈ 𝑉 ) → ( 𝑆 ‘ ( 0g𝑈 ) ) ∈ ran 𝑆 )
26 21 24 25 syl2anc ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) ∈ ran 𝑆 )
27 20 26 eqeltrrd ( 𝜑0 ∈ ran 𝑆 )
28 13 18 27 pm2.61ne ( 𝜑𝑠 ∈ ran 𝑆 )