| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem15.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem15.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem15.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem15.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem15.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem15.q | ⊢  0   =  ( 0g ‘ 𝐶 ) | 
						
							| 8 |  | hdmaprnlem15.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 9 |  | hdmaprnlem15.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmaprnlem15.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmaprnlem15.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmaprnlem17.se | ⊢ ( 𝜑  →  𝑠  ∈  𝐷 ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑠  =   0   →  ( 𝑠  ∈  ran  𝑆  ↔   0   ∈  ran  𝑆 ) ) | 
						
							| 14 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ≠   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 15 | 12 | anim1i | ⊢ ( ( 𝜑  ∧  𝑠  ≠   0  )  →  ( 𝑠  ∈  𝐷  ∧  𝑠  ≠   0  ) ) | 
						
							| 16 |  | eldifsn | ⊢ ( 𝑠  ∈  ( 𝐷  ∖  {  0  } )  ↔  ( 𝑠  ∈  𝐷  ∧  𝑠  ≠   0  ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( 𝜑  ∧  𝑠  ≠   0  )  →  𝑠  ∈  ( 𝐷  ∖  {  0  } ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 14 17 | hdmaprnlem16N | ⊢ ( ( 𝜑  ∧  𝑠  ≠   0  )  →  𝑠  ∈  ran  𝑆 ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 20 | 1 2 19 5 7 10 11 | hdmapval0 | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  =   0  ) | 
						
							| 21 | 1 2 3 10 11 | hdmapfnN | ⊢ ( 𝜑  →  𝑆  Fn  𝑉 ) | 
						
							| 22 | 1 2 11 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 | 3 19 | lmod0vcl | ⊢ ( 𝑈  ∈  LMod  →  ( 0g ‘ 𝑈 )  ∈  𝑉 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑈 )  ∈  𝑉 ) | 
						
							| 25 |  | fnfvelrn | ⊢ ( ( 𝑆  Fn  𝑉  ∧  ( 0g ‘ 𝑈 )  ∈  𝑉 )  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  ∈  ran  𝑆 ) | 
						
							| 26 | 21 24 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  ∈  ran  𝑆 ) | 
						
							| 27 | 20 26 | eqeltrrd | ⊢ ( 𝜑  →   0   ∈  ran  𝑆 ) | 
						
							| 28 | 13 18 27 | pm2.61ne | ⊢ ( 𝜑  →  𝑠  ∈  ran  𝑆 ) |