| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaprn.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaprn.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 4 |
|
hdmaprn.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmaprn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
1 6 7 4 5
|
hdmapfnN |
⊢ ( 𝜑 → 𝑆 Fn ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 11 |
1 6 7 2 3 4 9 10
|
hdmapcl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑆 ‘ 𝑠 ) ∈ 𝐷 ) |
| 12 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑠 ) ∈ 𝐷 ) |
| 13 |
|
fnfvrnss |
⊢ ( ( 𝑆 Fn ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∀ 𝑠 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑠 ) ∈ 𝐷 ) → ran 𝑆 ⊆ 𝐷 ) |
| 14 |
8 12 13
|
syl2anc |
⊢ ( 𝜑 → ran 𝑆 ⊆ 𝐷 ) |
| 15 |
|
eqid |
⊢ ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 17 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
| 18 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ 𝐷 ) |
| 21 |
1 6 7 15 2 3 16 17 18 4 19 20
|
hdmaprnlem17N |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → 𝑠 ∈ ran 𝑆 ) |
| 22 |
14 21
|
eqelssd |
⊢ ( 𝜑 → ran 𝑆 = 𝐷 ) |