| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprn.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprn.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | hdmaprn.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmaprn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 8 | 1 6 7 4 5 | hdmapfnN | ⊢ ( 𝜑  →  𝑆  Fn  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 9 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 11 | 1 6 7 2 3 4 9 10 | hdmapcl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝑆 ‘ 𝑠 )  ∈  𝐷 ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑠 )  ∈  𝐷 ) | 
						
							| 13 |  | fnfvrnss | ⊢ ( ( 𝑆  Fn  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ∀ 𝑠  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑠 )  ∈  𝐷 )  →  ran  𝑆  ⊆  𝐷 ) | 
						
							| 14 | 8 12 13 | syl2anc | ⊢ ( 𝜑  →  ran  𝑆  ⊆  𝐷 ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 18 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  𝐷 ) | 
						
							| 21 | 1 6 7 15 2 3 16 17 18 4 19 20 | hdmaprnlem17N | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  ran  𝑆 ) | 
						
							| 22 | 14 21 | eqelssd | ⊢ ( 𝜑  →  ran  𝑆  =  𝐷 ) |