| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapf1o.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapf1o.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapf1o.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapf1o.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapf1o.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 6 |  | hdmapf1o.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapf1o.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 | 1 2 3 6 7 | hdmapfnN | ⊢ ( 𝜑  →  𝑆  Fn  𝑉 ) | 
						
							| 9 | 1 4 5 6 7 | hdmaprnN | ⊢ ( 𝜑  →  ran  𝑆  =  𝐷 ) | 
						
							| 10 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 12 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 13 | 1 2 3 6 10 11 12 | hdmap11 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 15 | 14 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 16 |  | dff1o6 | ⊢ ( 𝑆 : 𝑉 –1-1-onto→ 𝐷  ↔  ( 𝑆  Fn  𝑉  ∧  ran  𝑆  =  𝐷  ∧  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 17 | 8 9 15 16 | syl3anbrc | ⊢ ( 𝜑  →  𝑆 : 𝑉 –1-1-onto→ 𝐷 ) |