Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapf1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapf1o.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapf1o.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
6 |
|
hdmapf1o.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapf1o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
1 2 3 6 7
|
hdmapfnN |
⊢ ( 𝜑 → 𝑆 Fn 𝑉 ) |
9 |
1 4 5 6 7
|
hdmaprnN |
⊢ ( 𝜑 → ran 𝑆 = 𝐷 ) |
10 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
13 |
1 2 3 6 10 11 12
|
hdmap11 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
14 |
13
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
15 |
14
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
16 |
|
dff1o6 |
⊢ ( 𝑆 : 𝑉 –1-1-onto→ 𝐷 ↔ ( 𝑆 Fn 𝑉 ∧ ran 𝑆 = 𝐷 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
17 |
8 9 15 16
|
syl3anbrc |
⊢ ( 𝜑 → 𝑆 : 𝑉 –1-1-onto→ 𝐷 ) |