Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapf1o.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapf1o.v |
|- V = ( Base ` U ) |
4 |
|
hdmapf1o.c |
|- C = ( ( LCDual ` K ) ` W ) |
5 |
|
hdmapf1o.d |
|- D = ( Base ` C ) |
6 |
|
hdmapf1o.s |
|- S = ( ( HDMap ` K ) ` W ) |
7 |
|
hdmapf1o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
1 2 3 6 7
|
hdmapfnN |
|- ( ph -> S Fn V ) |
9 |
1 4 5 6 7
|
hdmaprnN |
|- ( ph -> ran S = D ) |
10 |
7
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simprl |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
12 |
|
simprr |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) |
13 |
1 2 3 6 10 11 12
|
hdmap11 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) <-> x = y ) ) |
14 |
13
|
biimpd |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) -> x = y ) ) |
15 |
14
|
ralrimivva |
|- ( ph -> A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) ) |
16 |
|
dff1o6 |
|- ( S : V -1-1-onto-> D <-> ( S Fn V /\ ran S = D /\ A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) ) ) |
17 |
8 9 15 16
|
syl3anbrc |
|- ( ph -> S : V -1-1-onto-> D ) |