Metamath Proof Explorer


Theorem hdmapf1oN

Description: Part 12 in Baer p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd , this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapf1o.h
|- H = ( LHyp ` K )
hdmapf1o.u
|- U = ( ( DVecH ` K ) ` W )
hdmapf1o.v
|- V = ( Base ` U )
hdmapf1o.c
|- C = ( ( LCDual ` K ) ` W )
hdmapf1o.d
|- D = ( Base ` C )
hdmapf1o.s
|- S = ( ( HDMap ` K ) ` W )
hdmapf1o.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion hdmapf1oN
|- ( ph -> S : V -1-1-onto-> D )

Proof

Step Hyp Ref Expression
1 hdmapf1o.h
 |-  H = ( LHyp ` K )
2 hdmapf1o.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapf1o.v
 |-  V = ( Base ` U )
4 hdmapf1o.c
 |-  C = ( ( LCDual ` K ) ` W )
5 hdmapf1o.d
 |-  D = ( Base ` C )
6 hdmapf1o.s
 |-  S = ( ( HDMap ` K ) ` W )
7 hdmapf1o.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 1 2 3 6 7 hdmapfnN
 |-  ( ph -> S Fn V )
9 1 4 5 6 7 hdmaprnN
 |-  ( ph -> ran S = D )
10 7 adantr
 |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( K e. HL /\ W e. H ) )
11 simprl
 |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V )
12 simprr
 |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V )
13 1 2 3 6 10 11 12 hdmap11
 |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) <-> x = y ) )
14 13 biimpd
 |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) -> x = y ) )
15 14 ralrimivva
 |-  ( ph -> A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) )
16 dff1o6
 |-  ( S : V -1-1-onto-> D <-> ( S Fn V /\ ran S = D /\ A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) ) )
17 8 9 15 16 syl3anbrc
 |-  ( ph -> S : V -1-1-onto-> D )