| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapf1o.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapf1o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapf1o.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapf1o.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 5 |  | hdmapf1o.d |  |-  D = ( Base ` C ) | 
						
							| 6 |  | hdmapf1o.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 7 |  | hdmapf1o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 | 1 2 3 6 7 | hdmapfnN |  |-  ( ph -> S Fn V ) | 
						
							| 9 | 1 4 5 6 7 | hdmaprnN |  |-  ( ph -> ran S = D ) | 
						
							| 10 | 7 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) | 
						
							| 12 |  | simprr |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) | 
						
							| 13 | 1 2 3 6 10 11 12 | hdmap11 |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) <-> x = y ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( S ` x ) = ( S ` y ) -> x = y ) ) | 
						
							| 15 | 14 | ralrimivva |  |-  ( ph -> A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) ) | 
						
							| 16 |  | dff1o6 |  |-  ( S : V -1-1-onto-> D <-> ( S Fn V /\ ran S = D /\ A. x e. V A. y e. V ( ( S ` x ) = ( S ` y ) -> x = y ) ) ) | 
						
							| 17 | 8 9 15 16 | syl3anbrc |  |-  ( ph -> S : V -1-1-onto-> D ) |