Metamath Proof Explorer


Theorem hdmap14lem1a

Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1a.h
|- H = ( LHyp ` K )
hdmap14lem1a.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem1a.v
|- V = ( Base ` U )
hdmap14lem1a.t
|- .x. = ( .s ` U )
hdmap14lem1a.r
|- R = ( Scalar ` U )
hdmap14lem1a.b
|- B = ( Base ` R )
hdmap14lem1a.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem2a.e
|- .xb = ( .s ` C )
hdmap14lem1a.l
|- L = ( LSpan ` C )
hdmap14lem2a.p
|- P = ( Scalar ` C )
hdmap14lem2a.a
|- A = ( Base ` P )
hdmap14lem1a.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem1a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem3a.x
|- ( ph -> X e. V )
hdmap14lem1a.f
|- ( ph -> F e. B )
hdmap14lem1a.z
|- .0. = ( 0g ` R )
hdmap14lem1a.fn
|- ( ph -> F =/= .0. )
Assertion hdmap14lem1a
|- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem1a.h
 |-  H = ( LHyp ` K )
2 hdmap14lem1a.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem1a.v
 |-  V = ( Base ` U )
4 hdmap14lem1a.t
 |-  .x. = ( .s ` U )
5 hdmap14lem1a.r
 |-  R = ( Scalar ` U )
6 hdmap14lem1a.b
 |-  B = ( Base ` R )
7 hdmap14lem1a.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap14lem2a.e
 |-  .xb = ( .s ` C )
9 hdmap14lem1a.l
 |-  L = ( LSpan ` C )
10 hdmap14lem2a.p
 |-  P = ( Scalar ` C )
11 hdmap14lem2a.a
 |-  A = ( Base ` P )
12 hdmap14lem1a.s
 |-  S = ( ( HDMap ` K ) ` W )
13 hdmap14lem1a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 hdmap14lem3a.x
 |-  ( ph -> X e. V )
15 hdmap14lem1a.f
 |-  ( ph -> F e. B )
16 hdmap14lem1a.z
 |-  .0. = ( 0g ` R )
17 hdmap14lem1a.fn
 |-  ( ph -> F =/= .0. )
18 1 2 13 dvhlvec
 |-  ( ph -> U e. LVec )
19 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
20 3 5 4 6 16 19 lspsnvs
 |-  ( ( U e. LVec /\ ( F e. B /\ F =/= .0. ) /\ X e. V ) -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) )
21 18 15 17 14 20 syl121anc
 |-  ( ph -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) )
22 21 fveq2d
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) )
23 eqid
 |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W )
24 1 2 13 dvhlmod
 |-  ( ph -> U e. LMod )
25 3 5 4 6 lmodvscl
 |-  ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V )
26 24 15 14 25 syl3anc
 |-  ( ph -> ( F .x. X ) e. V )
27 1 2 3 19 7 9 23 12 13 26 hdmap10
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( L ` { ( S ` ( F .x. X ) ) } ) )
28 1 2 3 19 7 9 23 12 13 14 hdmap10
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( L ` { ( S ` X ) } ) )
29 22 27 28 3eqtr3rd
 |-  ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) )