Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1a.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem1a.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem1a.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem1a.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem1a.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem1a.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem1a.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem2a.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem1a.l |
|- L = ( LSpan ` C ) |
10 |
|
hdmap14lem2a.p |
|- P = ( Scalar ` C ) |
11 |
|
hdmap14lem2a.a |
|- A = ( Base ` P ) |
12 |
|
hdmap14lem1a.s |
|- S = ( ( HDMap ` K ) ` W ) |
13 |
|
hdmap14lem1a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
hdmap14lem3a.x |
|- ( ph -> X e. V ) |
15 |
|
hdmap14lem1a.f |
|- ( ph -> F e. B ) |
16 |
|
hdmap14lem1a.z |
|- .0. = ( 0g ` R ) |
17 |
|
hdmap14lem1a.fn |
|- ( ph -> F =/= .0. ) |
18 |
1 2 13
|
dvhlvec |
|- ( ph -> U e. LVec ) |
19 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
20 |
3 5 4 6 16 19
|
lspsnvs |
|- ( ( U e. LVec /\ ( F e. B /\ F =/= .0. ) /\ X e. V ) -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) ) |
21 |
18 15 17 14 20
|
syl121anc |
|- ( ph -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) ) |
22 |
21
|
fveq2d |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) ) |
23 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
24 |
1 2 13
|
dvhlmod |
|- ( ph -> U e. LMod ) |
25 |
3 5 4 6
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
26 |
24 15 14 25
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
27 |
1 2 3 19 7 9 23 12 13 26
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
28 |
1 2 3 19 7 9 23 12 13 14
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( L ` { ( S ` X ) } ) ) |
29 |
22 27 28
|
3eqtr3rd |
|- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |