| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap14lem1a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap14lem1a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap14lem1a.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap14lem1a.t |
|- .x. = ( .s ` U ) |
| 5 |
|
hdmap14lem1a.r |
|- R = ( Scalar ` U ) |
| 6 |
|
hdmap14lem1a.b |
|- B = ( Base ` R ) |
| 7 |
|
hdmap14lem1a.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
hdmap14lem2a.e |
|- .xb = ( .s ` C ) |
| 9 |
|
hdmap14lem1a.l |
|- L = ( LSpan ` C ) |
| 10 |
|
hdmap14lem2a.p |
|- P = ( Scalar ` C ) |
| 11 |
|
hdmap14lem2a.a |
|- A = ( Base ` P ) |
| 12 |
|
hdmap14lem1a.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 13 |
|
hdmap14lem1a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
hdmap14lem3a.x |
|- ( ph -> X e. V ) |
| 15 |
|
hdmap14lem1a.f |
|- ( ph -> F e. B ) |
| 16 |
|
hdmap14lem1a.z |
|- .0. = ( 0g ` R ) |
| 17 |
|
hdmap14lem1a.fn |
|- ( ph -> F =/= .0. ) |
| 18 |
1 2 13
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 19 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 20 |
3 5 4 6 16 19
|
lspsnvs |
|- ( ( U e. LVec /\ ( F e. B /\ F =/= .0. ) /\ X e. V ) -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) ) |
| 21 |
18 15 17 14 20
|
syl121anc |
|- ( ph -> ( ( LSpan ` U ) ` { ( F .x. X ) } ) = ( ( LSpan ` U ) ` { X } ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) ) |
| 23 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 24 |
1 2 13
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 25 |
3 5 4 6
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
| 26 |
24 15 14 25
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
| 27 |
1 2 3 19 7 9 23 12 13 26
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( F .x. X ) } ) ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
| 28 |
1 2 3 19 7 9 23 12 13 14
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( L ` { ( S ` X ) } ) ) |
| 29 |
22 27 28
|
3eqtr3rd |
|- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |