Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1a.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem1a.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem1a.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem1a.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem1a.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem1a.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem1a.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem2a.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem1a.l |
|- L = ( LSpan ` C ) |
10 |
|
hdmap14lem2a.p |
|- P = ( Scalar ` C ) |
11 |
|
hdmap14lem2a.a |
|- A = ( Base ` P ) |
12 |
|
hdmap14lem1a.s |
|- S = ( ( HDMap ` K ) ` W ) |
13 |
|
hdmap14lem1a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
hdmap14lem3a.x |
|- ( ph -> X e. V ) |
15 |
|
hdmap14lem1a.f |
|- ( ph -> F e. B ) |
16 |
|
fvoveq1 |
|- ( F = ( 0g ` R ) -> ( S ` ( F .x. X ) ) = ( S ` ( ( 0g ` R ) .x. X ) ) ) |
17 |
16
|
eqeq1d |
|- ( F = ( 0g ` R ) -> ( ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> ( S ` ( ( 0g ` R ) .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
18 |
17
|
rexbidv |
|- ( F = ( 0g ` R ) -> ( E. g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E. g e. A ( S ` ( ( 0g ` R ) .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
19 |
|
difss |
|- ( A \ { ( 0g ` P ) } ) C_ A |
20 |
13
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
14
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> X e. V ) |
22 |
15
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. B ) |
23 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
24 |
|
simpr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> F =/= ( 0g ` R ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 20 21 22 23 24
|
hdmap14lem1a |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
26 |
25
|
eqcomd |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) ) |
27 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
28 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
29 |
1 7 13
|
lcdlvec |
|- ( ph -> C e. LVec ) |
30 |
1 2 13
|
dvhlmod |
|- ( ph -> U e. LMod ) |
31 |
3 5 4 6
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
32 |
30 15 14 31
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
33 |
1 2 3 7 27 12 13 32
|
hdmapcl |
|- ( ph -> ( S ` ( F .x. X ) ) e. ( Base ` C ) ) |
34 |
1 2 3 7 27 12 13 14
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` C ) ) |
35 |
27 10 11 28 8 9 29 33 34
|
lspsneq |
|- ( ph -> ( ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) <-> E. g e. ( A \ { ( 0g ` P ) } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> ( ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) <-> E. g e. ( A \ { ( 0g ` P ) } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
37 |
26 36
|
mpbid |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> E. g e. ( A \ { ( 0g ` P ) } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
38 |
|
ssrexv |
|- ( ( A \ { ( 0g ` P ) } ) C_ A -> ( E. g e. ( A \ { ( 0g ` P ) } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) -> E. g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
39 |
19 37 38
|
mpsyl |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> E. g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
40 |
1 7 13
|
lcdlmod |
|- ( ph -> C e. LMod ) |
41 |
10 11 28
|
lmod0cl |
|- ( C e. LMod -> ( 0g ` P ) e. A ) |
42 |
40 41
|
syl |
|- ( ph -> ( 0g ` P ) e. A ) |
43 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
44 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
45 |
1 2 43 7 44 12 13
|
hdmapval0 |
|- ( ph -> ( S ` ( 0g ` U ) ) = ( 0g ` C ) ) |
46 |
3 5 4 23 43
|
lmod0vs |
|- ( ( U e. LMod /\ X e. V ) -> ( ( 0g ` R ) .x. X ) = ( 0g ` U ) ) |
47 |
30 14 46
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) .x. X ) = ( 0g ` U ) ) |
48 |
47
|
fveq2d |
|- ( ph -> ( S ` ( ( 0g ` R ) .x. X ) ) = ( S ` ( 0g ` U ) ) ) |
49 |
27 10 8 28 44
|
lmod0vs |
|- ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( ( 0g ` P ) .xb ( S ` X ) ) = ( 0g ` C ) ) |
50 |
40 34 49
|
syl2anc |
|- ( ph -> ( ( 0g ` P ) .xb ( S ` X ) ) = ( 0g ` C ) ) |
51 |
45 48 50
|
3eqtr4d |
|- ( ph -> ( S ` ( ( 0g ` R ) .x. X ) ) = ( ( 0g ` P ) .xb ( S ` X ) ) ) |
52 |
|
oveq1 |
|- ( g = ( 0g ` P ) -> ( g .xb ( S ` X ) ) = ( ( 0g ` P ) .xb ( S ` X ) ) ) |
53 |
52
|
rspceeqv |
|- ( ( ( 0g ` P ) e. A /\ ( S ` ( ( 0g ` R ) .x. X ) ) = ( ( 0g ` P ) .xb ( S ` X ) ) ) -> E. g e. A ( S ` ( ( 0g ` R ) .x. X ) ) = ( g .xb ( S ` X ) ) ) |
54 |
42 51 53
|
syl2anc |
|- ( ph -> E. g e. A ( S ` ( ( 0g ` R ) .x. X ) ) = ( g .xb ( S ` X ) ) ) |
55 |
18 39 54
|
pm2.61ne |
|- ( ph -> E. g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |