Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap14lem1.h | |- H = ( LHyp ` K ) |
|
hdmap14lem1.u | |- U = ( ( DVecH ` K ) ` W ) |
||
hdmap14lem1.v | |- V = ( Base ` U ) |
||
hdmap14lem1.t | |- .x. = ( .s ` U ) |
||
hdmap14lem3.o | |- .0. = ( 0g ` U ) |
||
hdmap14lem1.r | |- R = ( Scalar ` U ) |
||
hdmap14lem1.b | |- B = ( Base ` R ) |
||
hdmap14lem1.z | |- Z = ( 0g ` R ) |
||
hdmap14lem1.c | |- C = ( ( LCDual ` K ) ` W ) |
||
hdmap14lem2.e | |- .xb = ( .s ` C ) |
||
hdmap14lem1.l | |- L = ( LSpan ` C ) |
||
hdmap14lem2.p | |- P = ( Scalar ` C ) |
||
hdmap14lem2.a | |- A = ( Base ` P ) |
||
hdmap14lem2.q | |- Q = ( 0g ` P ) |
||
hdmap14lem1.s | |- S = ( ( HDMap ` K ) ` W ) |
||
hdmap14lem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
hdmap14lem3.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
hdmap14lem1.f | |- ( ph -> F e. ( B \ { Z } ) ) |
||
Assertion | hdmap14lem1 | |- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem1.h | |- H = ( LHyp ` K ) |
|
2 | hdmap14lem1.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | hdmap14lem1.v | |- V = ( Base ` U ) |
|
4 | hdmap14lem1.t | |- .x. = ( .s ` U ) |
|
5 | hdmap14lem3.o | |- .0. = ( 0g ` U ) |
|
6 | hdmap14lem1.r | |- R = ( Scalar ` U ) |
|
7 | hdmap14lem1.b | |- B = ( Base ` R ) |
|
8 | hdmap14lem1.z | |- Z = ( 0g ` R ) |
|
9 | hdmap14lem1.c | |- C = ( ( LCDual ` K ) ` W ) |
|
10 | hdmap14lem2.e | |- .xb = ( .s ` C ) |
|
11 | hdmap14lem1.l | |- L = ( LSpan ` C ) |
|
12 | hdmap14lem2.p | |- P = ( Scalar ` C ) |
|
13 | hdmap14lem2.a | |- A = ( Base ` P ) |
|
14 | hdmap14lem2.q | |- Q = ( 0g ` P ) |
|
15 | hdmap14lem1.s | |- S = ( ( HDMap ` K ) ` W ) |
|
16 | hdmap14lem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
17 | hdmap14lem3.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
18 | hdmap14lem1.f | |- ( ph -> F e. ( B \ { Z } ) ) |
|
19 | 17 | eldifad | |- ( ph -> X e. V ) |
20 | 18 | eldifad | |- ( ph -> F e. B ) |
21 | eldifsni | |- ( F e. ( B \ { Z } ) -> F =/= Z ) |
|
22 | 18 21 | syl | |- ( ph -> F =/= Z ) |
23 | 1 2 3 4 6 7 9 10 11 12 13 15 16 19 20 8 22 | hdmap14lem1a | |- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |