| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem8.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem8.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem8.q |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap14lem8.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmap14lem8.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap14lem8.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap14lem8.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmap14lem8.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmap14lem8.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | hdmap14lem8.d |  |-  .+b = ( +g ` C ) | 
						
							| 12 |  | hdmap14lem8.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hdmap14lem8.p |  |-  P = ( Scalar ` C ) | 
						
							| 14 |  | hdmap14lem8.a |  |-  A = ( Base ` P ) | 
						
							| 15 |  | hdmap14lem8.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem8.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem8.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem8.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap14lem8.f |  |-  ( ph -> F e. B ) | 
						
							| 20 |  | hdmap14lem8.g |  |-  ( ph -> G e. A ) | 
						
							| 21 |  | hdmap14lem8.i |  |-  ( ph -> I e. A ) | 
						
							| 22 |  | hdmap14lem8.xx |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy |  |-  ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 24 |  | hdmap14lem8.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 25 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 26 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 27 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 28 | 18 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 29 | 3 4 | lmodvacl |  |-  ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) | 
						
							| 30 | 26 27 28 29 | syl3anc |  |-  ( ph -> ( X .+ Y ) e. V ) | 
						
							| 31 | 1 2 3 5 8 9 10 12 25 13 14 15 16 30 19 | hdmap14lem2a |  |-  ( ph -> E. g e. A ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) | 
						
							| 32 | 16 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 33 | 17 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 34 | 18 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 35 | 19 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> F e. B ) | 
						
							| 36 | 20 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> G e. A ) | 
						
							| 37 | 21 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> I e. A ) | 
						
							| 38 | 22 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 39 | 23 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 40 | 24 | 3ad2ant1 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 41 |  | simp2 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> g e. A ) | 
						
							| 42 |  | simp3 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 | hdmap14lem9 |  |-  ( ( ph /\ g e. A /\ ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) ) -> G = I ) | 
						
							| 44 | 43 | rexlimdv3a |  |-  ( ph -> ( E. g e. A ( S ` ( F .x. ( X .+ Y ) ) ) = ( g .xb ( S ` ( X .+ Y ) ) ) -> G = I ) ) | 
						
							| 45 | 31 44 | mpd |  |-  ( ph -> G = I ) |