Metamath Proof Explorer


Theorem hdmap14lem9

Description: Part of proof of part 14 in Baer p. 49 line 38. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h
|- H = ( LHyp ` K )
hdmap14lem8.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem8.v
|- V = ( Base ` U )
hdmap14lem8.q
|- .+ = ( +g ` U )
hdmap14lem8.t
|- .x. = ( .s ` U )
hdmap14lem8.o
|- .0. = ( 0g ` U )
hdmap14lem8.n
|- N = ( LSpan ` U )
hdmap14lem8.r
|- R = ( Scalar ` U )
hdmap14lem8.b
|- B = ( Base ` R )
hdmap14lem8.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem8.d
|- .+b = ( +g ` C )
hdmap14lem8.e
|- .xb = ( .s ` C )
hdmap14lem8.p
|- P = ( Scalar ` C )
hdmap14lem8.a
|- A = ( Base ` P )
hdmap14lem8.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem8.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem8.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap14lem8.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap14lem8.f
|- ( ph -> F e. B )
hdmap14lem8.g
|- ( ph -> G e. A )
hdmap14lem8.i
|- ( ph -> I e. A )
hdmap14lem8.xx
|- ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) )
hdmap14lem8.yy
|- ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) )
hdmap14lem8.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
hdmap14lem8.j
|- ( ph -> J e. A )
hdmap14lem8.xy
|- ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( J .xb ( S ` ( X .+ Y ) ) ) )
Assertion hdmap14lem9
|- ( ph -> G = I )

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h
 |-  H = ( LHyp ` K )
2 hdmap14lem8.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem8.v
 |-  V = ( Base ` U )
4 hdmap14lem8.q
 |-  .+ = ( +g ` U )
5 hdmap14lem8.t
 |-  .x. = ( .s ` U )
6 hdmap14lem8.o
 |-  .0. = ( 0g ` U )
7 hdmap14lem8.n
 |-  N = ( LSpan ` U )
8 hdmap14lem8.r
 |-  R = ( Scalar ` U )
9 hdmap14lem8.b
 |-  B = ( Base ` R )
10 hdmap14lem8.c
 |-  C = ( ( LCDual ` K ) ` W )
11 hdmap14lem8.d
 |-  .+b = ( +g ` C )
12 hdmap14lem8.e
 |-  .xb = ( .s ` C )
13 hdmap14lem8.p
 |-  P = ( Scalar ` C )
14 hdmap14lem8.a
 |-  A = ( Base ` P )
15 hdmap14lem8.s
 |-  S = ( ( HDMap ` K ) ` W )
16 hdmap14lem8.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap14lem8.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
18 hdmap14lem8.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
19 hdmap14lem8.f
 |-  ( ph -> F e. B )
20 hdmap14lem8.g
 |-  ( ph -> G e. A )
21 hdmap14lem8.i
 |-  ( ph -> I e. A )
22 hdmap14lem8.xx
 |-  ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) )
23 hdmap14lem8.yy
 |-  ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) )
24 hdmap14lem8.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
25 hdmap14lem8.j
 |-  ( ph -> J e. A )
26 hdmap14lem8.xy
 |-  ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( J .xb ( S ` ( X .+ Y ) ) ) )
27 eqid
 |-  ( Base ` C ) = ( Base ` C )
28 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
29 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
30 1 10 16 lcdlvec
 |-  ( ph -> C e. LVec )
31 1 2 3 6 10 28 27 15 16 17 hdmapnzcl
 |-  ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) )
32 1 2 3 6 10 28 27 15 16 18 hdmapnzcl
 |-  ( ph -> ( S ` Y ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) )
33 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
34 eqid
 |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W )
35 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
36 17 eldifad
 |-  ( ph -> X e. V )
37 3 33 7 lspsncl
 |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
38 35 36 37 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) )
39 18 eldifad
 |-  ( ph -> Y e. V )
40 3 33 7 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
41 35 39 40 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
42 1 2 33 34 16 38 41 mapd11
 |-  ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) = ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) )
43 42 necon3bid
 |-  ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) =/= ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) )
44 24 43 mpbird
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) =/= ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) )
45 1 2 3 7 10 29 34 15 16 36 hdmap10
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) = ( ( LSpan ` C ) ` { ( S ` X ) } ) )
46 1 2 3 7 10 29 34 15 16 39 hdmap10
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) = ( ( LSpan ` C ) ` { ( S ` Y ) } ) )
47 44 45 46 3netr3d
 |-  ( ph -> ( ( LSpan ` C ) ` { ( S ` X ) } ) =/= ( ( LSpan ` C ) ` { ( S ` Y ) } ) )
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 hdmap14lem8
 |-  ( ph -> ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) )
49 27 11 13 14 12 28 29 30 31 32 25 25 20 21 47 48 lvecindp2
 |-  ( ph -> ( J = G /\ J = I ) )
50 49 simpld
 |-  ( ph -> J = G )
51 49 simprd
 |-  ( ph -> J = I )
52 50 51 eqtr3d
 |-  ( ph -> G = I )