| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem8.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem8.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem8.q |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap14lem8.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmap14lem8.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap14lem8.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap14lem8.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmap14lem8.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmap14lem8.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | hdmap14lem8.d |  |-  .+b = ( +g ` C ) | 
						
							| 12 |  | hdmap14lem8.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hdmap14lem8.p |  |-  P = ( Scalar ` C ) | 
						
							| 14 |  | hdmap14lem8.a |  |-  A = ( Base ` P ) | 
						
							| 15 |  | hdmap14lem8.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem8.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem8.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem8.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap14lem8.f |  |-  ( ph -> F e. B ) | 
						
							| 20 |  | hdmap14lem8.g |  |-  ( ph -> G e. A ) | 
						
							| 21 |  | hdmap14lem8.i |  |-  ( ph -> I e. A ) | 
						
							| 22 |  | hdmap14lem8.xx |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy |  |-  ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 24 |  | hdmap14lem8.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 25 |  | hdmap14lem8.j |  |-  ( ph -> J e. A ) | 
						
							| 26 |  | hdmap14lem8.xy |  |-  ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( J .xb ( S ` ( X .+ Y ) ) ) ) | 
						
							| 27 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 29 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 30 | 1 10 16 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 31 | 1 2 3 6 10 28 27 15 16 17 | hdmapnzcl |  |-  ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) | 
						
							| 32 | 1 2 3 6 10 28 27 15 16 18 | hdmapnzcl |  |-  ( ph -> ( S ` Y ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) | 
						
							| 33 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 34 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 35 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 36 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 37 | 3 33 7 | lspsncl |  |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 38 | 35 36 37 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 39 | 18 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 40 | 3 33 7 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 41 | 35 39 40 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 42 | 1 2 33 34 16 38 41 | mapd11 |  |-  ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) = ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 43 | 42 | necon3bid |  |-  ( ph -> ( ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) =/= ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) | 
						
							| 44 | 24 43 | mpbird |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) =/= ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) ) | 
						
							| 45 | 1 2 3 7 10 29 34 15 16 36 | hdmap10 |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { X } ) ) = ( ( LSpan ` C ) ` { ( S ` X ) } ) ) | 
						
							| 46 | 1 2 3 7 10 29 34 15 16 39 | hdmap10 |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { Y } ) ) = ( ( LSpan ` C ) ` { ( S ` Y ) } ) ) | 
						
							| 47 | 44 45 46 | 3netr3d |  |-  ( ph -> ( ( LSpan ` C ) ` { ( S ` X ) } ) =/= ( ( LSpan ` C ) ` { ( S ` Y ) } ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | hdmap14lem8 |  |-  ( ph -> ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) | 
						
							| 49 | 27 11 13 14 12 28 29 30 31 32 25 25 20 21 47 48 | lvecindp2 |  |-  ( ph -> ( J = G /\ J = I ) ) | 
						
							| 50 | 49 | simpld |  |-  ( ph -> J = G ) | 
						
							| 51 | 49 | simprd |  |-  ( ph -> J = I ) | 
						
							| 52 | 50 51 | eqtr3d |  |-  ( ph -> G = I ) |