Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem8.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem8.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem8.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem8.q |
|- .+ = ( +g ` U ) |
5 |
|
hdmap14lem8.t |
|- .x. = ( .s ` U ) |
6 |
|
hdmap14lem8.o |
|- .0. = ( 0g ` U ) |
7 |
|
hdmap14lem8.n |
|- N = ( LSpan ` U ) |
8 |
|
hdmap14lem8.r |
|- R = ( Scalar ` U ) |
9 |
|
hdmap14lem8.b |
|- B = ( Base ` R ) |
10 |
|
hdmap14lem8.c |
|- C = ( ( LCDual ` K ) ` W ) |
11 |
|
hdmap14lem8.d |
|- .+b = ( +g ` C ) |
12 |
|
hdmap14lem8.e |
|- .xb = ( .s ` C ) |
13 |
|
hdmap14lem8.p |
|- P = ( Scalar ` C ) |
14 |
|
hdmap14lem8.a |
|- A = ( Base ` P ) |
15 |
|
hdmap14lem8.s |
|- S = ( ( HDMap ` K ) ` W ) |
16 |
|
hdmap14lem8.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap14lem8.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
hdmap14lem8.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
hdmap14lem8.f |
|- ( ph -> F e. B ) |
20 |
|
hdmap14lem8.g |
|- ( ph -> G e. A ) |
21 |
|
hdmap14lem8.i |
|- ( ph -> I e. A ) |
22 |
|
hdmap14lem8.xx |
|- ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) |
23 |
|
hdmap14lem8.yy |
|- ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) |
24 |
|
hdmap14lem8.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
25 |
|
hdmap14lem8.j |
|- ( ph -> J e. A ) |
26 |
|
hdmap14lem8.xy |
|- ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( J .xb ( S ` ( X .+ Y ) ) ) ) |
27 |
1 10 16
|
lcdlmod |
|- ( ph -> C e. LMod ) |
28 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
29 |
17
|
eldifad |
|- ( ph -> X e. V ) |
30 |
1 2 3 10 28 15 16 29
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` C ) ) |
31 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
32 |
1 2 3 10 28 15 16 31
|
hdmapcl |
|- ( ph -> ( S ` Y ) e. ( Base ` C ) ) |
33 |
28 11 13 12 14
|
lmodvsdi |
|- ( ( C e. LMod /\ ( J e. A /\ ( S ` X ) e. ( Base ` C ) /\ ( S ` Y ) e. ( Base ` C ) ) ) -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) ) |
34 |
27 25 30 32 33
|
syl13anc |
|- ( ph -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) ) |
35 |
1 2 3 4 10 11 15 16 29 31
|
hdmapadd |
|- ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) ) |
36 |
35
|
oveq2d |
|- ( ph -> ( J .xb ( S ` ( X .+ Y ) ) ) = ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) ) |
37 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
38 |
3 4 8 5 9
|
lmodvsdi |
|- ( ( U e. LMod /\ ( F e. B /\ X e. V /\ Y e. V ) ) -> ( F .x. ( X .+ Y ) ) = ( ( F .x. X ) .+ ( F .x. Y ) ) ) |
39 |
37 19 29 31 38
|
syl13anc |
|- ( ph -> ( F .x. ( X .+ Y ) ) = ( ( F .x. X ) .+ ( F .x. Y ) ) ) |
40 |
39
|
fveq2d |
|- ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( S ` ( ( F .x. X ) .+ ( F .x. Y ) ) ) ) |
41 |
3 8 5 9
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
42 |
37 19 29 41
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
43 |
3 8 5 9
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ Y e. V ) -> ( F .x. Y ) e. V ) |
44 |
37 19 31 43
|
syl3anc |
|- ( ph -> ( F .x. Y ) e. V ) |
45 |
1 2 3 4 10 11 15 16 42 44
|
hdmapadd |
|- ( ph -> ( S ` ( ( F .x. X ) .+ ( F .x. Y ) ) ) = ( ( S ` ( F .x. X ) ) .+b ( S ` ( F .x. Y ) ) ) ) |
46 |
22 23
|
oveq12d |
|- ( ph -> ( ( S ` ( F .x. X ) ) .+b ( S ` ( F .x. Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |
47 |
40 45 46
|
3eqtrd |
|- ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |
48 |
26 47
|
eqtr3d |
|- ( ph -> ( J .xb ( S ` ( X .+ Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |
49 |
36 48
|
eqtr3d |
|- ( ph -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |
50 |
34 49
|
eqtr3d |
|- ( ph -> ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |