| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem8.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem8.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem8.q |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap14lem8.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmap14lem8.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap14lem8.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap14lem8.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmap14lem8.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmap14lem8.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | hdmap14lem8.d |  |-  .+b = ( +g ` C ) | 
						
							| 12 |  | hdmap14lem8.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hdmap14lem8.p |  |-  P = ( Scalar ` C ) | 
						
							| 14 |  | hdmap14lem8.a |  |-  A = ( Base ` P ) | 
						
							| 15 |  | hdmap14lem8.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem8.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem8.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem8.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap14lem8.f |  |-  ( ph -> F e. B ) | 
						
							| 20 |  | hdmap14lem8.g |  |-  ( ph -> G e. A ) | 
						
							| 21 |  | hdmap14lem8.i |  |-  ( ph -> I e. A ) | 
						
							| 22 |  | hdmap14lem8.xx |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy |  |-  ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 24 |  | hdmap14lem8.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 25 |  | hdmap14lem8.j |  |-  ( ph -> J e. A ) | 
						
							| 26 |  | hdmap14lem8.xy |  |-  ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( J .xb ( S ` ( X .+ Y ) ) ) ) | 
						
							| 27 | 1 10 16 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 28 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 29 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 30 | 1 2 3 10 28 15 16 29 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` C ) ) | 
						
							| 31 | 18 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 32 | 1 2 3 10 28 15 16 31 | hdmapcl |  |-  ( ph -> ( S ` Y ) e. ( Base ` C ) ) | 
						
							| 33 | 28 11 13 12 14 | lmodvsdi |  |-  ( ( C e. LMod /\ ( J e. A /\ ( S ` X ) e. ( Base ` C ) /\ ( S ` Y ) e. ( Base ` C ) ) ) -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) ) | 
						
							| 34 | 27 25 30 32 33 | syl13anc |  |-  ( ph -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) ) | 
						
							| 35 | 1 2 3 4 10 11 15 16 29 31 | hdmapadd |  |-  ( ph -> ( S ` ( X .+ Y ) ) = ( ( S ` X ) .+b ( S ` Y ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ph -> ( J .xb ( S ` ( X .+ Y ) ) ) = ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) ) | 
						
							| 37 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 38 | 3 4 8 5 9 | lmodvsdi |  |-  ( ( U e. LMod /\ ( F e. B /\ X e. V /\ Y e. V ) ) -> ( F .x. ( X .+ Y ) ) = ( ( F .x. X ) .+ ( F .x. Y ) ) ) | 
						
							| 39 | 37 19 29 31 38 | syl13anc |  |-  ( ph -> ( F .x. ( X .+ Y ) ) = ( ( F .x. X ) .+ ( F .x. Y ) ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( S ` ( ( F .x. X ) .+ ( F .x. Y ) ) ) ) | 
						
							| 41 | 3 8 5 9 | lmodvscl |  |-  ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) | 
						
							| 42 | 37 19 29 41 | syl3anc |  |-  ( ph -> ( F .x. X ) e. V ) | 
						
							| 43 | 3 8 5 9 | lmodvscl |  |-  ( ( U e. LMod /\ F e. B /\ Y e. V ) -> ( F .x. Y ) e. V ) | 
						
							| 44 | 37 19 31 43 | syl3anc |  |-  ( ph -> ( F .x. Y ) e. V ) | 
						
							| 45 | 1 2 3 4 10 11 15 16 42 44 | hdmapadd |  |-  ( ph -> ( S ` ( ( F .x. X ) .+ ( F .x. Y ) ) ) = ( ( S ` ( F .x. X ) ) .+b ( S ` ( F .x. Y ) ) ) ) | 
						
							| 46 | 22 23 | oveq12d |  |-  ( ph -> ( ( S ` ( F .x. X ) ) .+b ( S ` ( F .x. Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) | 
						
							| 47 | 40 45 46 | 3eqtrd |  |-  ( ph -> ( S ` ( F .x. ( X .+ Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) | 
						
							| 48 | 26 47 | eqtr3d |  |-  ( ph -> ( J .xb ( S ` ( X .+ Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) | 
						
							| 49 | 36 48 | eqtr3d |  |-  ( ph -> ( J .xb ( ( S ` X ) .+b ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) | 
						
							| 50 | 34 49 | eqtr3d |  |-  ( ph -> ( ( J .xb ( S ` X ) ) .+b ( J .xb ( S ` Y ) ) ) = ( ( G .xb ( S ` X ) ) .+b ( I .xb ( S ` Y ) ) ) ) |