| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem8.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem8.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem8.q | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem8.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem8.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem8.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap14lem8.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | hdmap14lem8.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | hdmap14lem8.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmap14lem8.d | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem8.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem8.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 14 |  | hdmap14lem8.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem8.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem8.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem8.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem8.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap14lem8.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 20 |  | hdmap14lem8.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 21 |  | hdmap14lem8.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐴 ) | 
						
							| 22 |  | hdmap14lem8.xx | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) )  =  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 24 |  | hdmap14lem8.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 25 |  | hdmap14lem8.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐴 ) | 
						
							| 26 |  | hdmap14lem8.xy | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  ( 𝑋  +  𝑌 ) ) )  =  ( 𝐽  ∙  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 27 | 1 10 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 29 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 30 | 1 2 3 10 28 15 16 29 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 31 | 18 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 32 | 1 2 3 10 28 15 16 31 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 33 | 28 11 13 12 14 | lmodvsdi | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝐽  ∈  𝐴  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 )  ∧  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ 𝐶 ) ) )  →  ( 𝐽  ∙  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) )  =  ( ( 𝐽  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐽  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 34 | 27 25 30 32 33 | syl13anc | ⊢ ( 𝜑  →  ( 𝐽  ∙  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) )  =  ( ( 𝐽  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐽  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 35 | 1 2 3 4 10 11 15 16 29 31 | hdmapadd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝜑  →  ( 𝐽  ∙  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝐽  ∙  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 37 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 38 | 3 4 8 5 9 | lmodvsdi | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐹  ∈  𝐵  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝐹  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 𝐹  ·  𝑋 )  +  ( 𝐹  ·  𝑌 ) ) ) | 
						
							| 39 | 37 19 29 31 38 | syl13anc | ⊢ ( 𝜑  →  ( 𝐹  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 𝐹  ·  𝑋 )  +  ( 𝐹  ·  𝑌 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  ( 𝑋  +  𝑌 ) ) )  =  ( 𝑆 ‘ ( ( 𝐹  ·  𝑋 )  +  ( 𝐹  ·  𝑌 ) ) ) ) | 
						
							| 41 | 3 8 5 9 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐹  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 42 | 37 19 29 41 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 43 | 3 8 5 9 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐹  ∈  𝐵  ∧  𝑌  ∈  𝑉 )  →  ( 𝐹  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 44 | 37 19 31 43 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 45 | 1 2 3 4 10 11 15 16 42 44 | hdmapadd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( ( 𝐹  ·  𝑋 )  +  ( 𝐹  ·  𝑌 ) ) )  =  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ✚  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) ) ) ) | 
						
							| 46 | 22 23 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ✚  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 47 | 40 45 46 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  ( 𝑋  +  𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 48 | 26 47 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐽  ∙  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 49 | 36 48 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐽  ∙  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 50 | 34 49 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐽  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐽  ∙  ( 𝑆 ‘ 𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) |