| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem8.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem8.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem8.q | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem8.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem8.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem8.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap14lem8.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | hdmap14lem8.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | hdmap14lem8.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmap14lem8.d | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem8.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem8.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 14 |  | hdmap14lem8.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem8.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem8.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem8.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem8.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap14lem8.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 20 |  | hdmap14lem8.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 21 |  | hdmap14lem8.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐴 ) | 
						
							| 22 |  | hdmap14lem8.xx | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) )  =  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 24 |  | hdmap14lem8.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 25 |  | hdmap14lem8.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐴 ) | 
						
							| 26 |  | hdmap14lem8.xy | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  ( 𝑋  +  𝑌 ) ) )  =  ( 𝐽  ∙  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 29 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 30 | 1 10 16 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 31 | 1 2 3 6 10 28 27 15 16 17 | hdmapnzcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 32 | 1 2 3 6 10 28 27 15 16 18 | hdmapnzcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 33 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 34 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 35 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 36 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 37 | 3 33 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 | 18 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 40 | 3 33 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 41 | 35 39 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 42 | 1 2 33 34 16 38 41 | mapd11 | ⊢ ( 𝜑  →  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) )  ↔  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 43 | 42 | necon3bid | ⊢ ( 𝜑  →  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑋 } ) )  ≠  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) )  ↔  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 44 | 24 43 | mpbird | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑋 } ) )  ≠  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 45 | 1 2 3 7 10 29 34 15 16 36 | hdmap10 | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) | 
						
							| 46 | 1 2 3 7 10 29 34 15 16 39 | hdmap10 | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑌 ) } ) ) | 
						
							| 47 | 44 45 46 | 3netr3d | ⊢ ( 𝜑  →  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑋 ) } )  ≠  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝑆 ‘ 𝑌 ) } ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | hdmap14lem8 | ⊢ ( 𝜑  →  ( ( 𝐽  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐽  ∙  ( 𝑆 ‘ 𝑌 ) ) )  =  ( ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ✚  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) ) | 
						
							| 49 | 27 11 13 14 12 28 29 30 31 32 25 25 20 21 47 48 | lvecindp2 | ⊢ ( 𝜑  →  ( 𝐽  =  𝐺  ∧  𝐽  =  𝐼 ) ) | 
						
							| 50 | 49 | simpld | ⊢ ( 𝜑  →  𝐽  =  𝐺 ) | 
						
							| 51 | 49 | simprd | ⊢ ( 𝜑  →  𝐽  =  𝐼 ) | 
						
							| 52 | 50 51 | eqtr3d | ⊢ ( 𝜑  →  𝐺  =  𝐼 ) |